forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoffline_inference_mlpspeculator.py
56 lines (44 loc) · 1.7 KB
/
offline_inference_mlpspeculator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import gc
import time
from typing import List
from vllm import LLM, SamplingParams
def time_generation(llm: LLM, prompts: List[str],
sampling_params: SamplingParams):
# Generate texts from the prompts. The output is a list of RequestOutput
# objects that contain the prompt, generated text, and other information.
# Warmup first
llm.generate(prompts, sampling_params)
llm.generate(prompts, sampling_params)
start = time.time()
outputs = llm.generate(prompts, sampling_params)
end = time.time()
print((end - start) / sum([len(o.outputs[0].token_ids) for o in outputs]))
# Print the outputs.
for output in outputs:
generated_text = output.outputs[0].text
print(f"text: {generated_text!r}")
if __name__ == "__main__":
template = (
"Below is an instruction that describes a task. Write a response "
"that appropriately completes the request.\n\n### Instruction:\n{}"
"\n\n### Response:\n")
# Sample prompts.
prompts = [
"Write about the president of the United States.",
]
prompts = [template.format(prompt) for prompt in prompts]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.0, max_tokens=200)
# Create an LLM without spec decoding
llm = LLM(model="meta-llama/Llama-2-13b-chat-hf")
print("Without speculation")
time_generation(llm, prompts, sampling_params)
del llm
gc.collect()
# Create an LLM with spec decoding
llm = LLM(
model="meta-llama/Llama-2-13b-chat-hf",
speculative_model="ibm-fms/llama-13b-accelerator",
)
print("With speculation")
time_generation(llm, prompts, sampling_params)