-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfcnet.py
170 lines (153 loc) · 8.84 KB
/
fcnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
######################################
# https://github.com/sczhou/ProPainter
######################################
import torch.nn as nn
import torch.nn.functional as F
import torch
from mmcv.ops import ModulatedDeformConv2d, modulated_deform_conv2d
class SecondOrderDeformableAlignment(ModulatedDeformConv2d):
def __init__(self, *args, **kwargs):
self.max_residue_magnitude = kwargs.pop('max_residue_magnitude', 5)
super().__init__(*args, **kwargs)
self.conv_offset = nn.Sequential(
nn.Conv2d(3 * self.out_channels, self.out_channels, 3, 1, 1),
nn.LeakyReLU(negative_slope=0.1, inplace=True),
nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1),
nn.LeakyReLU(negative_slope=0.1, inplace=True),
nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1),
nn.LeakyReLU(negative_slope=0.1, inplace=True),
nn.Conv2d(self.out_channels, 27 * self.deform_groups, 3, 1, 1),
)
def forward(self, x, extra_feat):
out = self.conv_offset(extra_feat)
o1, o2, mask = torch.chunk(out, 3, dim=1)
offset = self.max_residue_magnitude * torch.tanh(torch.cat((o1, o2), dim=1))
offset_1, offset_2 = torch.chunk(offset, 2, dim=1)
offset = torch.cat([offset_1, offset_2], dim=1)
mask = torch.sigmoid(mask)
return modulated_deform_conv2d(x, offset, mask, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups, self.deform_groups)
class BidirectionalPropagation(nn.Module):
def __init__(self, channel):
super().__init__()
modules = ['backward_', 'forward_']
self.deform_align = nn.ModuleDict()
self.backbone = nn.ModuleDict()
self.channel = channel
for i, module in enumerate(modules):
self.deform_align[module] = SecondOrderDeformableAlignment(2 * channel, channel, 3, padding=1, deform_groups=16)
self.backbone[module] = nn.Sequential(
nn.Conv2d((2 + i) * channel, channel, 3, 1, 1),
nn.LeakyReLU(negative_slope=0.1, inplace=True),
nn.Conv2d(channel, channel, 3, 1, 1),
)
self.fusion = nn.Conv2d(2 * channel, channel, 1, 1, 0)
def forward(self, x):
b, t, c, h, w = x.shape
feats = {}
feats['spatial'] = [x[:, i, :, :, :] for i in range(0, t)]
for module_name in ['backward_', 'forward_']:
feats[module_name] = []
frame_idx = range(0, t)
mapping_idx = list(range(0, len(feats['spatial'])))
mapping_idx += mapping_idx[::-1]
if 'backward' in module_name:
frame_idx = frame_idx[::-1]
feat_prop = x.new_zeros(b, self.channel, h, w)
for i, idx in enumerate(frame_idx):
feat_current = feats['spatial'][mapping_idx[idx]]
if i > 0:
cond_n1 = feat_prop
feat_n2 = torch.zeros_like(feat_prop)
cond_n2 = torch.zeros_like(cond_n1)
if i > 1:
feat_n2 = feats[module_name][-2]
cond_n2 = feat_n2
cond = torch.cat([cond_n1, feat_current, cond_n2], dim=1)
feat_prop = torch.cat([feat_prop, feat_n2], dim=1)
feat_prop = self.deform_align[module_name](feat_prop, cond)
feat = [feat_current] + [feats[k][idx] for k in feats if k not in ['spatial', module_name]] + [feat_prop]
feat = torch.cat(feat, dim=1)
feat_prop = feat_prop + self.backbone[module_name](feat)
feats[module_name].append(feat_prop)
if 'backward' in module_name:
feats[module_name] = feats[module_name][::-1]
outputs = []
for i in range(0, t):
align_feats = [feats[k].pop(0) for k in feats if k != 'spatial']
align_feats = torch.cat(align_feats, dim=1)
outputs.append(self.fusion(align_feats))
return torch.stack(outputs, dim=1) + x
class deconv(nn.Module):
def __init__(self, input_channel, output_channel, kernel_size=3, padding=0):
super().__init__()
self.conv = nn.Conv2d(input_channel, output_channel, kernel_size=kernel_size, stride=1, padding=padding)
def forward(self, x):
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
return self.conv(x)
class P3DBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, padding):
super().__init__()
self.conv1 = nn.Sequential(
nn.Conv3d(in_channels, out_channels, kernel_size=(1, kernel_size, kernel_size), stride=(1, stride, stride), padding=(0, padding, padding)),
nn.LeakyReLU(0.2, inplace=True)
)
self.conv2 = nn.Sequential(nn.Conv3d(out_channels, out_channels, kernel_size=(3, 1, 1), stride=(1, 1, 1), padding=(2, 0, 0), dilation=(2, 1, 1)))
def forward(self, feats):
feat1 = self.conv1(feats)
feat2 = self.conv2(feat1)
return feat2
class FCNet(nn.Module):
def __init__(self, model_path):
super().__init__()
self.downsample = nn.Sequential(nn.Conv3d(3, 32, kernel_size=(1, 5, 5), stride=(1, 2, 2), padding=(0, 2, 2), padding_mode='replicate'), nn.LeakyReLU(0.2, inplace=True))
self.encoder1 = nn.Sequential(P3DBlock(32, 32, 3, 1, 1), nn.LeakyReLU(0.2, inplace=True), P3DBlock(32, 64, 3, 2, 1), nn.LeakyReLU(0.2, inplace=True))
self.encoder2 = nn.Sequential(P3DBlock(64, 64, 3, 1, 1), nn.LeakyReLU(0.2, inplace=True), P3DBlock(64, 128, 3, 2, 1), nn.LeakyReLU(0.2, inplace=True))
self.mid_dilation = nn.Sequential(
nn.Conv3d(128, 128, (1, 3, 3), (1, 1, 1), padding=(0, 3, 3), dilation=(1, 3, 3)),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv3d(128, 128, (1, 3, 3), (1, 1, 1), padding=(0, 2, 2), dilation=(1, 2, 2)),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv3d(128, 128, (1, 3, 3), (1, 1, 1), padding=(0, 1, 1), dilation=(1, 1, 1)),
nn.LeakyReLU(0.2, inplace=True)
)
self.feat_prop_module = BidirectionalPropagation(128)
self.decoder2 = nn.Sequential(nn.Conv2d(128, 128, 3, 1, 1), nn.LeakyReLU(0.2, inplace=True), deconv(128, 64, 3, 1), nn.LeakyReLU(0.2, inplace=True))
self.decoder1 = nn.Sequential(nn.Conv2d(64, 64, 3, 1, 1), nn.LeakyReLU(0.2, inplace=True), deconv(64, 32, 3, 1), nn.LeakyReLU(0.2, inplace=True))
self.upsample = nn.Sequential(nn.Conv2d(32, 32, 3, padding=1), nn.LeakyReLU(0.2, inplace=True), deconv(32, 2, 3, 1))
self.load_state_dict(torch.load(model_path, map_location='cpu'), strict=False)
def forward(self, masked_flows, masks):
b, t, _, h, w = masked_flows.size()
masked_flows = masked_flows.permute(0, 2, 1, 3, 4)
masks = masks.permute(0, 2, 1, 3, 4)
inputs = torch.cat((masked_flows, masks), dim=1)
x = self.downsample(inputs)
feat_e1 = self.encoder1(x)
feat_e2 = self.encoder2(feat_e1)
feat_mid = self.mid_dilation(feat_e2)
feat_mid = feat_mid.permute(0, 2, 1, 3, 4)
feat_prop = self.feat_prop_module(feat_mid)
feat_prop = feat_prop.view(-1, 128, h // 8, w // 8)
_, c, _, h_f, w_f = feat_e1.shape
feat_e1 = feat_e1.permute(0, 2, 1, 3, 4).contiguous().view(-1, c, h_f, w_f)
feat_d2 = self.decoder2(feat_prop) + feat_e1
feat_d1 = self.decoder1(feat_d2)
flow = self.upsample(feat_d1)
flow = flow.view(b, t, 2, h, w)
return flow
def forward_bidirect_flow(self, masked_flows_bi, masks):
masks_forward = masks[:, :-1, ...].contiguous()
masks_backward = masks[:, 1:, ...].contiguous()
masked_flows_forward = masked_flows_bi[0] * (1 - masks_forward)
masked_flows_backward = masked_flows_bi[1] * (1 - masks_backward)
pred_flows_forward = self.forward(masked_flows_forward, masks_forward)
masked_flows_backward = torch.flip(masked_flows_backward, dims=[1])
masks_backward = torch.flip(masks_backward, dims=[1])
pred_flows_backward = self.forward(masked_flows_backward, masks_backward)
pred_flows_backward = torch.flip(pred_flows_backward, dims=[1])
return pred_flows_forward, pred_flows_backward
def combine_flow(self, masked_flows_bi, pred_flows_bi, masks):
masks_forward = masks[:, :-1, ...].contiguous()
masks_backward = masks[:, 1:, ...].contiguous()
pred_flows_forward = pred_flows_bi[0] * masks_forward + masked_flows_bi[0] * (1 - masks_forward)
pred_flows_backward = pred_flows_bi[1] * masks_backward + masked_flows_bi[1] * (1 - masks_backward)
return pred_flows_forward, pred_flows_backward