-
Notifications
You must be signed in to change notification settings - Fork 2
/
NCC_Computation_MLE.m
52 lines (33 loc) · 1.48 KB
/
NCC_Computation_MLE.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
%%For details about MLE SPN, refer to
% Chen et al., "Determining Image Origin and Integrity Using Sensor Noise,
% T-IFS 2008
%%
function [normcrosscorr_similarity]= NCC_Computation_MLE(currentimage,qmf,L)
% Load all the reference patterns computed for MLE SPN--
cd('Noise Templates MLE\')
F1 = load('MLE template iPhone5_DEVICE1 FRONT.mat');
F2 = load('MLE template iPhone5_DEVICE2 FRONT.mat');
F3 = load('MLE template SamsungGalaxyS4 FRONT.mat');
F4 = load('MLE template ASUS.mat');
F5 = load('MLE template HTC.mat');
F6 = load('MLE template MEIZU.mat');
F7 = load('MLE template Oppo.mat');
F8 = load('MLE template SamsungGalaxyS6.mat');
F9 = load('MLE template Sony.mat');
Reference_patterns = [F1; F2; F3; F4; F5; F6; F7; F8; F9];
%% Correlate the testnoise residual with reference pattern
cd ..
Noisex_fft = NoiseExtractFromImage_MLE(currentimage,qmf,2,L);
Noiseresidual_spatial = WienerInDFT(Noisex_fft,std2(Noisex_fft));
Noiseresidual_testimage = single(Noiseresidual_spatial);
for camf =1:numel(Reference_patterns)
Camera_Fingerprint = Reference_patterns(camf).RP_spatial;
%% -------------
%% |Calculate NCC|
%% --------------
Ix = double(currentimage);
Camera_Fingerprint = double(Camera_Fingerprint);
[rsize,csize]=size(Ix);
Cx_resized = imresize(Camera_Fingerprint,[rsize,csize]);
normcrosscorr_similarity(camf) = normcor(Noiseresidual_testimage,Ix.*Cx_resized);
end