-
Notifications
You must be signed in to change notification settings - Fork 45
/
tut_solar_uav.py
485 lines (372 loc) · 17.9 KB
/
tut_solar_uav.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
# tut_solar_UAV.py
#
# Created: Jul 2014, E. Botero
# Modified: Aug 2017, E. Botero
#----------------------------------------------------------------------
# Imports
# ----------------------------------------------------------------------
import SUAVE
assert SUAVE.__version__=='2.5.2', 'These tutorials only work with the SUAVE 2.5.2 release'
from SUAVE.Core import Units
import numpy as np
import pylab as plt
import time
from SUAVE.Plots.Performance.Mission_Plots import *
from SUAVE.Components.Energy.Networks.Solar import Solar
from SUAVE.Methods.Propulsion import propeller_design
from SUAVE.Methods.Power.Battery.Sizing import initialize_from_mass
# ----------------------------------------------------------------------
# Main
# ----------------------------------------------------------------------
def main():
# build the vehicle, configs, and analyses
configs, analyses = full_setup()
configs.finalize()
analyses.finalize()
# weight analysis
weights = analyses.configs.base.weights
breakdown = weights.evaluate()
# mission analysis
mission = analyses.missions.base
results = mission.evaluate()
# plot results
plot_mission(results)
return
# ----------------------------------------------------------------------
# Analysis Setup
# ----------------------------------------------------------------------
def full_setup():
# vehicle data
vehicle = vehicle_setup()
configs = configs_setup(vehicle)
# vehicle analyses
configs_analyses = analyses_setup(configs)
# mission analyses
mission = mission_setup(configs_analyses,vehicle)
missions_analyses = missions_setup(mission)
analyses = SUAVE.Analyses.Analysis.Container()
analyses.configs = configs_analyses
analyses.missions = missions_analyses
return configs, analyses
# ----------------------------------------------------------------------
# Build the Vehicle
# ----------------------------------------------------------------------
def vehicle_setup():
# ------------------------------------------------------------------
# Initialize the Vehicle
# ------------------------------------------------------------------
vehicle = SUAVE.Vehicle()
vehicle.tag = 'Solar'
# ------------------------------------------------------------------
# Vehicle-level Properties
# ------------------------------------------------------------------
# mass properties
vehicle.mass_properties.takeoff = 250. * Units.kg
vehicle.mass_properties.operating_empty = 250. * Units.kg
vehicle.mass_properties.max_takeoff = 250. * Units.kg
# basic parameters
vehicle.reference_area = 80.
vehicle.envelope.ultimate_load = 2.0
vehicle.envelope.limit_load = 1.5
vehicle.envelope.maximum_dynamic_pressure = 0.5*1.225*(40.**2.) #Max q
# ------------------------------------------------------------------
# Main Wing
# ------------------------------------------------------------------
wing = SUAVE.Components.Wings.Main_Wing()
wing.tag = 'main_wing'
wing.areas.reference = vehicle.reference_area
wing.spans.projected = 40.0 * Units.meter
wing.aspect_ratio = (wing.spans.projected**2)/wing.areas.reference
wing.sweeps.quarter_chord = 0.0 * Units.deg
wing.symmetric = True
wing.thickness_to_chord = 0.12
wing.taper = 1.0
wing.vertical = False
wing.high_lift = True
wing.dynamic_pressure_ratio = 1.0
wing.chords.mean_aerodynamic = wing.areas.reference/wing.spans.projected
wing.chords.root = wing.areas.reference/wing.spans.projected
wing.chords.tip = wing.areas.reference/wing.spans.projected
wing.twists.root = 0.0 * Units.degrees
wing.twists.tip = 0.0 * Units.degrees
wing.highlift = False
wing.vertical = False
wing.number_ribs = 26.
wing.number_end_ribs = 2.
wing.transition_x_upper = 0.6
wing.transition_x_lower = 1.0
wing.origin = [[3.0,0.0,0.0]] # meters
wing.aerodynamic_center = [1.0,0.0,0.0] # meters
# add to vehicle
vehicle.append_component(wing)
# ------------------------------------------------------------------
# Horizontal Stabilizer
# ------------------------------------------------------------------
wing = SUAVE.Components.Wings.Horizontal_Tail()
wing.tag = 'horizontal_stabilizer'
wing.aspect_ratio = 20.
wing.sweeps.quarter_chord = 0 * Units.deg
wing.thickness_to_chord = 0.12
wing.taper = 1.0
wing.areas.reference = vehicle.reference_area * .15
wing.areas.wetted = 2.0 * wing.areas.reference
wing.areas.exposed = 0.8 * wing.areas.wetted
wing.areas.affected = 0.6 * wing.areas.wetted
wing.spans.projected = np.sqrt(wing.aspect_ratio*wing.areas.reference)
wing.twists.root = 0.0 * Units.degrees
wing.twists.tip = 0.0 * Units.degrees
wing.vertical = False
wing.symmetric = True
wing.dynamic_pressure_ratio = 0.9
wing.number_ribs = 5.0
wing.chords.root = wing.areas.reference/wing.spans.projected
wing.chords.tip = wing.areas.reference/wing.spans.projected
wing.chords.mean_aerodynamic = wing.areas.reference/wing.spans.projected
wing.origin = [[10.,0.0,0.0]] # meters
wing.aerodynamic_center = [0.5,0.0,0.0] # meters
# add to vehicle
vehicle.append_component(wing)
# ------------------------------------------------------------------
# Vertical Stabilizer
# ------------------------------------------------------------------
wing = SUAVE.Components.Wings.Vertical_Tail()
wing.tag = 'vertical_stabilizer'
wing.aspect_ratio = 20.
wing.sweeps.quarter_chord = 0 * Units.deg
wing.thickness_to_chord = 0.12
wing.taper = 1.0
wing.areas.reference = vehicle.reference_area * 0.1
wing.spans.projected = np.sqrt(wing.aspect_ratio*wing.areas.reference)
wing.chords.root = wing.areas.reference/wing.spans.projected
wing.chords.tip = wing.areas.reference/wing.spans.projected
wing.chords.mean_aerodynamic = wing.areas.reference/wing.spans.projected
wing.areas.wetted = 2.0 * wing.areas.reference
wing.areas.exposed = 0.8 * wing.areas.wetted
wing.areas.affected = 0.6 * wing.areas.wetted
wing.twists.root = 0.0 * Units.degrees
wing.twists.tip = 0.0 * Units.degrees
wing.origin = [[10.,0.0,0.0]] # meters
wing.aerodynamic_center = [0.5,0.0,0.0] # meters
wing.symmetric = True
wing.vertical = True
wing.t_tail = False
wing.dynamic_pressure_ratio = 1.0
wing.number_ribs = 5.
# add to vehicle
vehicle.append_component(wing)
# ------------------------------------------------------------------
# Nacelle
# ------------------------------------------------------------------
nacelle = SUAVE.Components.Nacelles.Nacelle()
nacelle.diameter = 0.2 * Units.meters
nacelle.length = 0.01 * Units.meters
nacelle.tag = 'nacelle'
nacelle.areas.wetted = nacelle.length *(2*np.pi*nacelle.diameter/2.)
vehicle.append_component(nacelle)
#------------------------------------------------------------------
# Propulsor
#------------------------------------------------------------------
# build network
net = Solar()
net.number_of_engines = 1.
# Component 1 the Sun?
sun = SUAVE.Components.Energy.Processes.Solar_Radiation()
net.solar_flux = sun
# Component 2 the solar panels
panel = SUAVE.Components.Energy.Converters.Solar_Panel()
panel.area = vehicle.reference_area * 0.9
panel.efficiency = 0.25
panel.mass_properties.mass = panel.area*(0.60 * Units.kg)
net.solar_panel = panel
# Component 3 the ESC
esc = SUAVE.Components.Energy.Distributors.Electronic_Speed_Controller()
esc.efficiency = 0.95 # Gundlach for brushless motors
net.esc = esc
# Component 5 the Propeller
# Design the Propeller
prop = SUAVE.Components.Energy.Converters.Propeller()
prop.number_of_blades = 2.0
prop.freestream_velocity = 40.0 * Units['m/s']# freestream
prop.angular_velocity = 150. * Units['rpm']
prop.tip_radius = 4.25 * Units.meters
prop.hub_radius = 0.05 * Units.meters
prop.design_Cl = 0.7
prop.design_altitude = 15.0 * Units.km
prop.design_power = None
prop.design_thrust = 120.
prop = propeller_design(prop)
net.propellers.append(prop)
# Component 4 the Motor
motor = SUAVE.Components.Energy.Converters.Motor()
motor.resistance = 0.006
motor.no_load_current = 2.5 * Units.ampere
motor.speed_constant = 30. * Units['rpm'] # RPM/volt converted to (rad/s)/volt
motor.propeller_radius = prop.tip_radius
motor.propeller_Cp = prop.design_power_coefficient
motor.gear_ratio = 12. # Gear ratio
motor.gearbox_efficiency = .98 # Gear box efficiency
motor.expected_current = 60. # Expected current
motor.mass_properties.mass = 2.0 * Units.kg
net.motors.append(motor)
# Component 6 the Payload
payload = SUAVE.Components.Energy.Peripherals.Payload()
payload.power_draw = 50. * Units.watts
payload.mass_properties.mass = 5.0 * Units.kg
net.payload = payload
# Component 7 the Avionics
avionics = SUAVE.Components.Energy.Peripherals.Avionics()
avionics.power_draw = 50. * Units.watts
net.avionics = avionics
# Component 8 the Battery
bat = SUAVE.Components.Energy.Storages.Batteries.Constant_Mass.Lithium_Ion()
bat.mass_properties.mass = 95.0 * Units.kg
bat.specific_energy = 800. * Units.Wh/Units.kg
bat.max_voltage = 130.0
initialize_from_mass(bat)
net.battery = bat
#Component 9 the system logic controller and MPPT
logic = SUAVE.Components.Energy.Distributors.Solar_Logic()
logic.system_voltage = 120.0
logic.MPPT_efficiency = 0.95
net.solar_logic = logic
# add the solar network to the vehicle
vehicle.append_component(net)
return vehicle
# ----------------------------------------------------------------------
# Define the Configurations
# ---------------------------------------------------------------------
def configs_setup(vehicle):
# ------------------------------------------------------------------
# Initialize Configurations
# ------------------------------------------------------------------
configs = SUAVE.Components.Configs.Config.Container()
base_config = SUAVE.Components.Configs.Config(vehicle)
base_config.tag = 'base'
configs.append(base_config)
# ------------------------------------------------------------------
# Cruise Configuration
# ------------------------------------------------------------------
config = SUAVE.Components.Configs.Config(base_config)
config.tag = 'cruise'
configs.append(config)
return configs
# ----------------------------------------------------------------------
# Define the Vehicle Analyses
# ----------------------------------------------------------------------
def analyses_setup(configs):
analyses = SUAVE.Analyses.Analysis.Container()
# build a base analysis for each config
for tag,config in configs.items():
analysis = base_analysis(config)
analyses[tag] = analysis
return analyses
def base_analysis(vehicle):
# ------------------------------------------------------------------
# Initialize the Analyses
# ------------------------------------------------------------------
analyses = SUAVE.Analyses.Vehicle()
# ------------------------------------------------------------------
# Basic Geometry Relations
sizing = SUAVE.Analyses.Sizing.Sizing()
sizing.features.vehicle = vehicle
analyses.append(sizing)
# ------------------------------------------------------------------
# Weights
weights = SUAVE.Analyses.Weights.Weights_UAV()
weights.settings.empty = \
SUAVE.Methods.Weights.Correlations.Human_Powered.empty
weights.vehicle = vehicle
analyses.append(weights)
# ------------------------------------------------------------------
# Aerodynamics Analysis
aerodynamics = SUAVE.Analyses.Aerodynamics.Fidelity_Zero()
aerodynamics.geometry = vehicle
aerodynamics.settings.drag_coefficient_increment = 0.0000
analyses.append(aerodynamics)
# ------------------------------------------------------------------
# Energy
energy = SUAVE.Analyses.Energy.Energy()
energy.network = vehicle.networks #what is called throughout the mission (at every time step))
analyses.append(energy)
# ------------------------------------------------------------------
# Planet Analysis
planet = SUAVE.Analyses.Planets.Planet()
analyses.append(planet)
# ------------------------------------------------------------------
# Atmosphere Analysis
atmosphere = SUAVE.Analyses.Atmospheric.US_Standard_1976()
atmosphere.features.planet = planet.features
analyses.append(atmosphere)
# done!
return analyses
# ----------------------------------------------------------------------
# Define the Mission
# ----------------------------------------------------------------------
def mission_setup(analyses,vehicle):
# ------------------------------------------------------------------
# Initialize the Mission
# ------------------------------------------------------------------
mission = SUAVE.Analyses.Mission.Sequential_Segments()
mission.tag = 'The Test Mission'
mission.atmosphere = SUAVE.Attributes.Atmospheres.Earth.US_Standard_1976()
mission.planet = SUAVE.Attributes.Planets.Earth()
# unpack Segments module
Segments = SUAVE.Analyses.Mission.Segments
# base segment
base_segment = Segments.Segment()
base_segment.process.iterate.initials.initialize_battery = SUAVE.Methods.Missions.Segments.Common.Energy.initialize_battery
# ------------------------------------------------------------------
# Cruise Segment: constant speed, constant altitude
# ------------------------------------------------------------------
segment = SUAVE.Analyses.Mission.Segments.Cruise.Constant_Mach_Constant_Altitude(base_segment)
segment.tag = "cruise1"
# connect vehicle configuration
segment.analyses.extend(analyses.cruise)
# segment attributes
segment.state.numerics.number_control_points = 64
segment.start_time = time.strptime("Tue, Jun 21 11:30:00 2022", "%a, %b %d %H:%M:%S %Y",)
segment.altitude = 15.0 * Units.km
segment.mach = 0.12
segment.distance = 3050.0 * Units.km
segment.battery_energy = vehicle.networks.solar.battery.max_energy*0.3 #Charge the battery to start
segment.latitude = 37.4300 # this defaults to degrees (do not use Units.degrees)
segment.longitude = -122.1700 # this defaults to degrees
segment = vehicle.networks.solar.add_unknowns_and_residuals_to_segment(segment,initial_power_coefficient = 0.05)
mission.append_segment(segment)
# ------------------------------------------------------------------
# Mission definition complete
# ------------------------------------------------------------------
return mission
def missions_setup(base_mission):
# the mission container
missions = SUAVE.Analyses.Mission.Mission.Container()
# ------------------------------------------------------------------
# Base Mission
# ------------------------------------------------------------------
missions.base = base_mission
# done!
return missions
# ----------------------------------------------------------------------
# Plot Results
# ----------------------------------------------------------------------
def plot_mission(results):
# Plot Flight Conditions
plot_flight_conditions(results)
# Plot Solar Conditions
plot_solar_flux(results)
# Plot Aerodynamic Coefficients
plot_aerodynamic_coefficients(results)
# Drag Components
plot_drag_components(results)
# Plot Aircraft Flight Speed
plot_aircraft_velocities(results)
# Plot Aircraft Electronics
plot_battery_pack_conditions(results)
# Plot Propeller Conditions
plot_propeller_conditions(results)
# Plot Electric Motor and Propeller Efficiencies
plot_eMotor_Prop_efficiencies(results)
return
if __name__ == '__main__':
main()
plt.show()