-
Notifications
You must be signed in to change notification settings - Fork 45
/
tut_mission_B737.py
969 lines (743 loc) · 38.2 KB
/
tut_mission_B737.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
# tut_mission_B737.py
#
# Created: Aug 2014, SUAVE Team
# Modified: Aug 2017, SUAVE Team
# Mar 2020, E. Botero
# ----------------------------------------------------------------------
# Imports
# ----------------------------------------------------------------------
# General Python Imports
import numpy as np
# Numpy is a commonly used mathematically computing package. It contains many frequently used
# mathematical functions and is faster than native Python, especially when using vectorized
# quantities.
import matplotlib.pyplot as plt
# Matplotlib's pyplot can be used to generate a large variety of plots. Here it is used to create
# visualizations of the aircraft's performance throughout the mission.
# SUAVE Imports
import SUAVE
assert SUAVE.__version__=='2.5.2', 'These tutorials only work with the SUAVE 2.5.2 release'
from SUAVE.Core import Data, Units
# The Data import here is a native SUAVE data structure that functions similarly to a dictionary.
# However, iteration directly returns values, and values can be retrieved either with the
# typical dictionary syntax of "entry['key']" or the more class-like "entry.key". For this to work
# properly, all keys must be strings.
# The Units import is used to allow units to be specified in the vehicle setup (or elsewhere).
# This is because SUAVE functions generally operate using metric units, so inputs must be
# converted. To use a length of 20 feet, set l = 20 * Units.ft . Additionally, to convert to SUAVE
# output back to a desired units, use l_ft = l_m / Units.ft
from SUAVE.Plots.Performance.Mission_Plots import *
# These are a variety of plotting routines that simplify the plotting process for commonly
# requested metrics. Plots of specifically desired metrics can also be manually created.
from SUAVE.Methods.Propulsion.turbofan_sizing import turbofan_sizing
# Rather than conventional sizing, this script builds the turbofan energy network. This process is
# covered in more detail in a separate tutorial. It does not size the turbofan geometry.
from copy import deepcopy
# ----------------------------------------------------------------------
# Main
# ----------------------------------------------------------------------
def main():
"""This function gets the vehicle configuration, analysis settings, and then runs the mission.
Once the mission is complete, the results are plotted."""
# Extract vehicle configurations and the analysis settings that go with them
configs, analyses = full_setup()
# Size each of the configurations according to a given set of geometry relations
simple_sizing(configs)
# Perform operations needed to make the configurations and analyses usable in the mission
configs.finalize()
analyses.finalize()
# Determine the vehicle weight breakdown (independent of mission fuel usage)
weights = analyses.configs.base.weights
breakdown = weights.evaluate()
# Perform a mission analysis
mission = analyses.missions.base
results = mission.evaluate()
# Plot all mission results, including items such as altitude profile and L/D
plot_mission(results)
return
# ----------------------------------------------------------------------
# Analysis Setup
# ----------------------------------------------------------------------
def full_setup():
"""This function gets the baseline vehicle and creates modifications for different
configurations, as well as the mission and analyses to go with those configurations."""
# Collect baseline vehicle data and changes when using different configuration settings
vehicle = vehicle_setup()
configs = configs_setup(vehicle)
# Get the analyses to be used when different configurations are evaluated
configs_analyses = analyses_setup(configs)
# Create the mission that will be flown
mission = mission_setup(configs_analyses)
missions_analyses = missions_setup(mission)
# Add the analyses to the proper containers
analyses = SUAVE.Analyses.Analysis.Container()
analyses.configs = configs_analyses
analyses.missions = missions_analyses
return configs, analyses
# ----------------------------------------------------------------------
# Define the Vehicle Analyses
# ----------------------------------------------------------------------
def analyses_setup(configs):
"""Set up analyses for each of the different configurations."""
analyses = SUAVE.Analyses.Analysis.Container()
# Build a base analysis for each configuration. Here the base analysis is always used, but
# this can be modified if desired for other cases.
for tag,config in configs.items():
analysis = base_analysis(config)
analyses[tag] = analysis
return analyses
def base_analysis(vehicle):
"""This is the baseline set of analyses to be used with this vehicle. Of these, the most
commonly changed are the weights and aerodynamics methods."""
# ------------------------------------------------------------------
# Initialize the Analyses
# ------------------------------------------------------------------
analyses = SUAVE.Analyses.Vehicle()
# ------------------------------------------------------------------
# Weights
weights = SUAVE.Analyses.Weights.Weights_Transport()
weights.vehicle = vehicle
analyses.append(weights)
# ------------------------------------------------------------------
# Aerodynamics Analysis
aerodynamics = SUAVE.Analyses.Aerodynamics.Fidelity_Zero()
aerodynamics.geometry = vehicle
analyses.append(aerodynamics)
# ------------------------------------------------------------------
# Stability Analysis
stability = SUAVE.Analyses.Stability.Fidelity_Zero()
stability.geometry = vehicle
analyses.append(stability)
# ------------------------------------------------------------------
# Energy
energy = SUAVE.Analyses.Energy.Energy()
energy.network = vehicle.networks
analyses.append(energy)
# ------------------------------------------------------------------
# Planet Analysis
planet = SUAVE.Analyses.Planets.Planet()
analyses.append(planet)
# ------------------------------------------------------------------
# Atmosphere Analysis
atmosphere = SUAVE.Analyses.Atmospheric.US_Standard_1976()
atmosphere.features.planet = planet.features
analyses.append(atmosphere)
return analyses
# ----------------------------------------------------------------------
# Define the Vehicle
# ----------------------------------------------------------------------
def vehicle_setup():
"""This is the full physical definition of the vehicle, and is designed to be independent of the
analyses that are selected."""
# ------------------------------------------------------------------
# Initialize the Vehicle
# ------------------------------------------------------------------
vehicle = SUAVE.Vehicle()
vehicle.tag = 'Boeing_737-800'
# ------------------------------------------------------------------
# Vehicle-level Properties
# ------------------------------------------------------------------
# Vehicle level mass properties
# The maximum takeoff gross weight is used by a number of methods, most notably the weight
# method. However, it does not directly inform mission analysis.
vehicle.mass_properties.max_takeoff = 79015.8 * Units.kilogram
# The takeoff weight is used to determine the weight of the vehicle at the start of the mission
vehicle.mass_properties.takeoff = 79015.8 * Units.kilogram
# Operating empty may be used by various weight methods or other methods. Importantly, it does
# not constrain the mission analysis directly, meaning that the vehicle weight in a mission
# can drop below this value if more fuel is needed than is available.
vehicle.mass_properties.operating_empty = 62746.4 * Units.kilogram
# The maximum zero fuel weight is also used by methods such as weights
vehicle.mass_properties.max_zero_fuel = 62732.0 * Units.kilogram
# Cargo weight typically feeds directly into weights output and does not affect the mission
vehicle.mass_properties.cargo = 10000. * Units.kilogram
# Envelope properties
# These values are typical FAR values for a transport of this type
vehicle.envelope.ultimate_load = 3.75
vehicle.envelope.limit_load = 2.5
# Vehicle level parameters
# The vehicle reference area typically matches the main wing reference area
vehicle.reference_area = 124.862 * Units['meters**2']
# Number of passengers, control settings, and accessories settings are used by the weights
# methods
vehicle.passengers = 170
vehicle.systems.control = "fully powered"
vehicle.systems.accessories = "medium range"
# ------------------------------------------------------------------
# Landing Gear
# ------------------------------------------------------------------
# The settings here can be used for noise analysis, but are not used in this tutorial
landing_gear = SUAVE.Components.Landing_Gear.Landing_Gear()
landing_gear.tag = "main_landing_gear"
landing_gear.main_tire_diameter = 1.12000 * Units.m
landing_gear.nose_tire_diameter = 0.6858 * Units.m
landing_gear.main_strut_length = 1.8 * Units.m
landing_gear.nose_strut_length = 1.3 * Units.m
landing_gear.main_units = 2 # Number of main landing gear
landing_gear.nose_units = 1 # Number of nose landing gear
landing_gear.main_wheels = 2 # Number of wheels on the main landing gear
landing_gear.nose_wheels = 2 # Number of wheels on the nose landing gear
vehicle.landing_gear = landing_gear
# ------------------------------------------------------------------
# Main Wing
# ------------------------------------------------------------------
# This main wing is approximated as a simple trapezoid. A segmented wing can also be created if
# desired. Segmented wings appear in later tutorials, and a version of the 737 with segmented
# wings can be found in the SUAVE testing scripts.
# SUAVE allows conflicting geometric values to be set in terms of items such as aspect ratio
# when compared with span and reference area. Sizing scripts may be used to enforce
# consistency if desired.
wing = SUAVE.Components.Wings.Main_Wing()
wing.tag = 'main_wing'
wing.aspect_ratio = 10.18
# Quarter chord sweep is used as the driving sweep in most of the low fidelity analysis methods.
# If a different known value (such as leading edge sweep) is given, it should be converted to
# quarter chord sweep and added here. In some cases leading edge sweep will be used directly as
# well, and can be entered here too.
wing.sweeps.quarter_chord = 25 * Units.deg
wing.thickness_to_chord = 0.1
wing.taper = 0.1
wing.spans.projected = 34.32 * Units.meter
wing.chords.root = 7.760 * Units.meter
wing.chords.tip = 0.782 * Units.meter
wing.chords.mean_aerodynamic = 4.235 * Units.meter
wing.areas.reference = 124.862 * Units['meters**2']
wing.twists.root = 4.0 * Units.degrees
wing.twists.tip = 0.0 * Units.degrees
wing.origin = [[13.61, 0, -1.27]] * Units.meter
wing.vertical = False
wing.symmetric = True
# The high lift flag controls aspects of maximum lift coefficient calculations
wing.high_lift = True
# The dynamic pressure ratio is used in stability calculations
wing.dynamic_pressure_ratio = 1.0
# ------------------------------------------------------------------
# Main Wing Control Surfaces
# ------------------------------------------------------------------
# Information in this section is used for high lift calculations and when conversion to AVL
# is desired.
# Deflections will typically be specified separately in individual vehicle configurations.
flap = SUAVE.Components.Wings.Control_Surfaces.Flap()
flap.tag = 'flap'
flap.span_fraction_start = 0.20
flap.span_fraction_end = 0.70
flap.deflection = 0.0 * Units.degrees
# Flap configuration types are used in computing maximum CL and noise
flap.configuration_type = 'double_slotted'
flap.chord_fraction = 0.30
wing.append_control_surface(flap)
slat = SUAVE.Components.Wings.Control_Surfaces.Slat()
slat.tag = 'slat'
slat.span_fraction_start = 0.324
slat.span_fraction_end = 0.963
slat.deflection = 0.0 * Units.degrees
slat.chord_fraction = 0.1
wing.append_control_surface(slat)
aileron = SUAVE.Components.Wings.Control_Surfaces.Aileron()
aileron.tag = 'aileron'
aileron.span_fraction_start = 0.7
aileron.span_fraction_end = 0.963
aileron.deflection = 0.0 * Units.degrees
aileron.chord_fraction = 0.16
wing.append_control_surface(aileron)
# Add to vehicle
vehicle.append_component(wing)
# ------------------------------------------------------------------
# Horizontal Stabilizer
# ------------------------------------------------------------------
wing = SUAVE.Components.Wings.Horizontal_Tail()
wing.tag = 'horizontal_stabilizer'
wing.aspect_ratio = 6.16
wing.sweeps.quarter_chord = 40.0 * Units.deg
wing.thickness_to_chord = 0.08
wing.taper = 0.2
wing.spans.projected = 14.2 * Units.meter
wing.chords.root = 4.7 * Units.meter
wing.chords.tip = 0.955 * Units.meter
wing.chords.mean_aerodynamic = 3.0 * Units.meter
wing.areas.reference = 32.488 * Units['meters**2']
wing.twists.root = 3.0 * Units.degrees
wing.twists.tip = 3.0 * Units.degrees
wing.origin = [[32.83 * Units.meter, 0 , 1.14 * Units.meter]]
wing.vertical = False
wing.symmetric = True
wing.dynamic_pressure_ratio = 0.9
# Add to vehicle
vehicle.append_component(wing)
# ------------------------------------------------------------------
# Vertical Stabilizer
# ------------------------------------------------------------------
wing = SUAVE.Components.Wings.Vertical_Tail()
wing.tag = 'vertical_stabilizer'
wing.aspect_ratio = 1.91
wing.sweeps.quarter_chord = 25. * Units.deg
wing.thickness_to_chord = 0.08
wing.taper = 0.25
wing.spans.projected = 7.777 * Units.meter
wing.chords.root = 8.19 * Units.meter
wing.chords.tip = 0.95 * Units.meter
wing.chords.mean_aerodynamic = 4.0 * Units.meter
wing.areas.reference = 27.316 * Units['meters**2']
wing.twists.root = 0.0 * Units.degrees
wing.twists.tip = 0.0 * Units.degrees
wing.origin = [[28.79 * Units.meter, 0, 1.54 * Units.meter]] # meters
wing.vertical = True
wing.symmetric = False
# The t tail flag is used in weights calculations
wing.t_tail = False
wing.dynamic_pressure_ratio = 1.0
# Add to vehicle
vehicle.append_component(wing)
# ------------------------------------------------------------------
# Fuselage
# ------------------------------------------------------------------
fuselage = SUAVE.Components.Fuselages.Fuselage()
fuselage.tag = 'fuselage'
# Number of coach seats is used in some weights methods
fuselage.number_coach_seats = vehicle.passengers
# The seats abreast can be used along with seat pitch and the number of coach seats to
# determine the length of the cabin if desired.
fuselage.seats_abreast = 6
fuselage.seat_pitch = 1 * Units.meter
# Fineness ratios are used to determine VLM fuselage shape and sections to use in OpenVSP
# output
fuselage.fineness.nose = 1.6
fuselage.fineness.tail = 2.
# Nose and tail lengths are used in the VLM setup
fuselage.lengths.nose = 6.4 * Units.meter
fuselage.lengths.tail = 8.0 * Units.meter
fuselage.lengths.total = 38.02 * Units.meter
# Fore and aft space are added to the cabin length if the fuselage is sized based on
# number of seats
fuselage.lengths.fore_space = 6. * Units.meter
fuselage.lengths.aft_space = 5. * Units.meter
fuselage.width = 3.74 * Units.meter
fuselage.heights.maximum = 3.74 * Units.meter
fuselage.effective_diameter = 3.74 * Units.meter
fuselage.areas.side_projected = 142.1948 * Units['meters**2']
fuselage.areas.wetted = 446.718 * Units['meters**2']
fuselage.areas.front_projected = 12.57 * Units['meters**2']
# Maximum differential pressure between the cabin and the atmosphere
fuselage.differential_pressure = 5.0e4 * Units.pascal
# Heights at different longitudinal locations are used in stability calculations and
# in output to OpenVSP
fuselage.heights.at_quarter_length = 3.74 * Units.meter
fuselage.heights.at_three_quarters_length = 3.65 * Units.meter
fuselage.heights.at_wing_root_quarter_chord = 3.74 * Units.meter
# add to vehicle
vehicle.append_component(fuselage)
# ------------------------------------------------------------------
# Nacelles
# ------------------------------------------------------------------
nacelle = SUAVE.Components.Nacelles.Nacelle()
nacelle.tag = 'nacelle_1'
nacelle.length = 2.71
nacelle.inlet_diameter = 1.90
nacelle.diameter = 2.05
nacelle.areas.wetted = 1.1*np.pi*nacelle.diameter*nacelle.length
nacelle.origin = [[13.72, -4.86,-1.9]]
nacelle.flow_through = True
nacelle_airfoil = SUAVE.Components.Airfoils.Airfoil()
nacelle_airfoil.naca_4_series_airfoil = '2410'
nacelle.append_airfoil(nacelle_airfoil)
nacelle_2 = deepcopy(nacelle)
nacelle_2.tag = 'nacelle_2'
nacelle_2.origin = [[13.72, 4.86,-1.9]]
vehicle.append_component(nacelle)
vehicle.append_component(nacelle_2)
# ------------------------------------------------------------------
# Turbofan Network
# ------------------------------------------------------------------
turbofan = SUAVE.Components.Energy.Networks.Turbofan()
# For some methods, the 'turbofan' tag is still necessary. This will be changed in the
# future to allow arbitrary tags.
turbofan.tag = 'turbofan'
# High-level setup
turbofan.number_of_engines = 2
turbofan.bypass_ratio = 5.4
turbofan.origin = [[13.72, 4.86,-1.9],[13.72, -4.86,-1.9]] * Units.meter
# Establish the correct working fluid
turbofan.working_fluid = SUAVE.Attributes.Gases.Air()
# Components use estimated efficiencies. Estimates by technology level can be
# found in textbooks such as those by J.D. Mattingly
# ------------------------------------------------------------------
# Component 1 - Ram
# Converts freestream static to stagnation quantities
ram = SUAVE.Components.Energy.Converters.Ram()
ram.tag = 'ram'
# add to the network
turbofan.append(ram)
# ------------------------------------------------------------------
# Component 2 - Inlet Nozzle
# Create component
inlet_nozzle = SUAVE.Components.Energy.Converters.Compression_Nozzle()
inlet_nozzle.tag = 'inlet_nozzle'
# Specify performance
inlet_nozzle.polytropic_efficiency = 0.98
inlet_nozzle.pressure_ratio = 0.98
# Add to network
turbofan.append(inlet_nozzle)
# ------------------------------------------------------------------
# Component 3 - Low Pressure Compressor
# Create component
compressor = SUAVE.Components.Energy.Converters.Compressor()
compressor.tag = 'low_pressure_compressor'
# Specify performance
compressor.polytropic_efficiency = 0.91
compressor.pressure_ratio = 1.14
# Add to network
turbofan.append(compressor)
# ------------------------------------------------------------------
# Component 4 - High Pressure Compressor
# Create component
compressor = SUAVE.Components.Energy.Converters.Compressor()
compressor.tag = 'high_pressure_compressor'
# Specify performance
compressor.polytropic_efficiency = 0.91
compressor.pressure_ratio = 13.415
# Add to network
turbofan.append(compressor)
# ------------------------------------------------------------------
# Component 5 - Low Pressure Turbine
# Create component
turbine = SUAVE.Components.Energy.Converters.Turbine()
turbine.tag='low_pressure_turbine'
# Specify performance
turbine.mechanical_efficiency = 0.99
turbine.polytropic_efficiency = 0.93
# Add to network
turbofan.append(turbine)
# ------------------------------------------------------------------
# Component 6 - High Pressure Turbine
# Create component
turbine = SUAVE.Components.Energy.Converters.Turbine()
turbine.tag='high_pressure_turbine'
# Specify performance
turbine.mechanical_efficiency = 0.99
turbine.polytropic_efficiency = 0.93
# Add to network
turbofan.append(turbine)
# ------------------------------------------------------------------
# Component 7 - Combustor
# Create component
combustor = SUAVE.Components.Energy.Converters.Combustor()
combustor.tag = 'combustor'
# Specify performance
combustor.efficiency = 0.99
combustor.alphac = 1.0
combustor.turbine_inlet_temperature = 1450 # K
combustor.pressure_ratio = 0.95
combustor.fuel_data = SUAVE.Attributes.Propellants.Jet_A()
# Add to network
turbofan.append(combustor)
# ------------------------------------------------------------------
# Component 8 - Core Nozzle
# Create component
nozzle = SUAVE.Components.Energy.Converters.Expansion_Nozzle()
nozzle.tag = 'core_nozzle'
# Specify performance
nozzle.polytropic_efficiency = 0.95
nozzle.pressure_ratio = 0.99
# Add to network
turbofan.append(nozzle)
# ------------------------------------------------------------------
# Component 9 - Fan Nozzle
# Create component
nozzle = SUAVE.Components.Energy.Converters.Expansion_Nozzle()
nozzle.tag = 'fan_nozzle'
# Specify performance
nozzle.polytropic_efficiency = 0.95
nozzle.pressure_ratio = 0.99
# Add to network
turbofan.append(nozzle)
# ------------------------------------------------------------------
# Component 10 - Fan
# Create component
fan = SUAVE.Components.Energy.Converters.Fan()
fan.tag = 'fan'
# Specify performance
fan.polytropic_efficiency = 0.93
fan.pressure_ratio = 1.7
# Add to network
turbofan.append(fan)
# ------------------------------------------------------------------
# Component 11 - thrust (to compute the thrust)
thrust = SUAVE.Components.Energy.Processes.Thrust()
thrust.tag ='compute_thrust'
# Design thrust is used to determine mass flow at full throttle
thrust.total_design = 2*24000. * Units.N #Newtons
# Add to network
turbofan.thrust = thrust
# Design sizing conditions are also used to determine mass flow
altitude = 35000.0*Units.ft
mach_number = 0.78
# Determine turbofan behavior at the design condition
turbofan_sizing(turbofan,mach_number,altitude)
# Add turbofan network to the vehicle
vehicle.append_component(turbofan)
# ------------------------------------------------------------------
# Vehicle Definition Complete
# ------------------------------------------------------------------
return vehicle
# ----------------------------------------------------------------------
# Define the Configurations
# ---------------------------------------------------------------------
def configs_setup(vehicle):
"""This function sets up vehicle configurations for use in different parts of the mission.
Here, this is mostly in terms of high lift settings."""
# ------------------------------------------------------------------
# Initialize Configurations
# ------------------------------------------------------------------
configs = SUAVE.Components.Configs.Config.Container()
base_config = SUAVE.Components.Configs.Config(vehicle)
base_config.tag = 'base'
configs.append(base_config)
# ------------------------------------------------------------------
# Cruise Configuration
# ------------------------------------------------------------------
config = SUAVE.Components.Configs.Config(base_config)
config.tag = 'cruise'
configs.append(config)
# ------------------------------------------------------------------
# Takeoff Configuration
# ------------------------------------------------------------------
config = SUAVE.Components.Configs.Config(base_config)
config.tag = 'takeoff'
config.wings['main_wing'].control_surfaces.flap.deflection = 20. * Units.deg
config.wings['main_wing'].control_surfaces.slat.deflection = 25. * Units.deg
# A max lift coefficient factor of 1 is the default, but it is highlighted here as an option
config.max_lift_coefficient_factor = 1.
configs.append(config)
# ------------------------------------------------------------------
# Cutback Configuration
# ------------------------------------------------------------------
config = SUAVE.Components.Configs.Config(base_config)
config.tag = 'cutback'
config.wings['main_wing'].control_surfaces.flap.deflection = 20. * Units.deg
config.wings['main_wing'].control_surfaces.slat.deflection = 20. * Units.deg
config.max_lift_coefficient_factor = 1.
configs.append(config)
# ------------------------------------------------------------------
# Landing Configuration
# ------------------------------------------------------------------
config = SUAVE.Components.Configs.Config(base_config)
config.tag = 'landing'
config.wings['main_wing'].control_surfaces.flap.deflection = 30. * Units.deg
config.wings['main_wing'].control_surfaces.slat.deflection = 25. * Units.deg
config.max_lift_coefficient_factor = 1.
configs.append(config)
# ------------------------------------------------------------------
# Short Field Takeoff Configuration
# ------------------------------------------------------------------
config = SUAVE.Components.Configs.Config(base_config)
config.tag = 'short_field_takeoff'
config.wings['main_wing'].control_surfaces.flap.deflection = 20. * Units.deg
config.wings['main_wing'].control_surfaces.slat.deflection = 20. * Units.deg
config.max_lift_coefficient_factor = 1.
configs.append(config)
return configs
def simple_sizing(configs):
"""This function applies a few basic geometric sizing relations and modifies the landing
configuration."""
base = configs.base
# Update the baseline data structure to prepare for changes
base.pull_base()
# Revise the zero fuel weight. This will only affect the base configuration. To do all
# configurations, this should be specified in the top level vehicle definition.
base.mass_properties.max_zero_fuel = 0.9 * base.mass_properties.max_takeoff
# Estimate wing areas
for wing in base.wings:
wing.areas.wetted = 2.0 * wing.areas.reference
wing.areas.exposed = 0.8 * wing.areas.wetted
wing.areas.affected = 0.6 * wing.areas.wetted
# Store how the changes compare to the baseline configuration
base.store_diff()
# ------------------------------------------------------------------
# Landing Configuration
# ------------------------------------------------------------------
landing = configs.landing
# Make sure base data is current
landing.pull_base()
# Add a landing weight parameter. This is used in field length estimation and in
# initially the landing mission segment type.
landing.mass_properties.landing = 0.85 * base.mass_properties.takeoff
# Store how the changes compare to the baseline configuration
landing.store_diff()
return
# ----------------------------------------------------------------------
# Define the Mission
# ----------------------------------------------------------------------
def mission_setup(analyses):
"""This function defines the baseline mission that will be flown by the aircraft in order
to compute performance."""
# ------------------------------------------------------------------
# Initialize the Mission
# ------------------------------------------------------------------
mission = SUAVE.Analyses.Mission.Sequential_Segments()
mission.tag = 'the_mission'
# Airport
# The airport parameters are used in calculating field length and noise. They are not
# directly used in mission performance estimation
airport = SUAVE.Attributes.Airports.Airport()
airport.altitude = 0.0 * Units.ft
airport.delta_isa = 0.0
airport.atmosphere = SUAVE.Attributes.Atmospheres.Earth.US_Standard_1976()
mission.airport = airport
# Unpack Segments module
Segments = SUAVE.Analyses.Mission.Segments
# Base segment
base_segment = Segments.Segment()
# ------------------------------------------------------------------
# First Climb Segment: Constant Speed, Constant Rate
# ------------------------------------------------------------------
# A constant speed, constant rate climb segment is used first. This means that the aircraft
# will maintain a constant airspeed and constant climb rate until it hits the end altitude.
# For this type of segment, the throttle is allowed to vary as needed to match required
# performance.
segment = Segments.Climb.Constant_Speed_Constant_Rate(base_segment)
# It is important that all segment tags must be unique for proper evaluation. At the moment
# this is not automatically enforced.
segment.tag = "climb_1"
# The analysis settings for mission segment are chosen here. These analyses include information
# on the vehicle configuration.
segment.analyses.extend( analyses.takeoff )
segment.altitude_start = 0.0 * Units.km
segment.altitude_end = 3.0 * Units.km
segment.air_speed = 125.0 * Units['m/s']
segment.climb_rate = 6.0 * Units['m/s']
# Add to misison
mission.append_segment(segment)
# ------------------------------------------------------------------
# Second Climb Segment: Constant Speed, Constant Rate
# ------------------------------------------------------------------
segment = Segments.Climb.Constant_Speed_Constant_Rate(base_segment)
segment.tag = "climb_2"
segment.analyses.extend( analyses.cruise )
# A starting altitude is no longer needed as it will automatically carry over from the
# previous segment. However, it could be specified if desired. This would potentially cause
# a jump in altitude but would otherwise not cause any problems.
segment.altitude_end = 8.0 * Units.km
segment.air_speed = 190.0 * Units['m/s']
segment.climb_rate = 6.0 * Units['m/s']
# Add to mission
mission.append_segment(segment)
# ------------------------------------------------------------------
# Third Climb Segment: constant Speed, Constant Rate
# ------------------------------------------------------------------
segment = Segments.Climb.Constant_Speed_Constant_Rate(base_segment)
segment.tag = "climb_3"
segment.analyses.extend( analyses.cruise )
segment.altitude_end = 10.668 * Units.km
segment.air_speed = 226.0 * Units['m/s']
segment.climb_rate = 3.0 * Units['m/s']
# Add to mission
mission.append_segment(segment)
# ------------------------------------------------------------------
# Cruise Segment: Constant Speed, Constant Altitude
# ------------------------------------------------------------------
segment = Segments.Cruise.Constant_Speed_Constant_Altitude(base_segment)
segment.tag = "cruise"
segment.analyses.extend( analyses.cruise )
segment.air_speed = 230.412 * Units['m/s']
segment.distance = 2490. * Units.nautical_miles
# Add to mission
mission.append_segment(segment)
# ------------------------------------------------------------------
# First Descent Segment: Constant Speed, Constant Rate
# ------------------------------------------------------------------
segment = Segments.Descent.Constant_Speed_Constant_Rate(base_segment)
segment.tag = "descent_1"
segment.analyses.extend( analyses.cruise )
segment.altitude_end = 8.0 * Units.km
segment.air_speed = 220.0 * Units['m/s']
segment.descent_rate = 4.5 * Units['m/s']
# Add to mission
mission.append_segment(segment)
# ------------------------------------------------------------------
# Second Descent Segment: Constant Speed, Constant Rate
# ------------------------------------------------------------------
segment = Segments.Descent.Constant_Speed_Constant_Rate(base_segment)
segment.tag = "descent_2"
segment.analyses.extend( analyses.landing )
segment.altitude_end = 6.0 * Units.km
segment.air_speed = 195.0 * Units['m/s']
segment.descent_rate = 5.0 * Units['m/s']
# Add to mission
mission.append_segment(segment)
# ------------------------------------------------------------------
# Third Descent Segment: Constant Speed, Constant Rate
# ------------------------------------------------------------------
segment = Segments.Descent.Constant_Speed_Constant_Rate(base_segment)
segment.tag = "descent_3"
segment.analyses.extend( analyses.landing )
# While it is set to zero here and therefore unchanged, a drag increment can be used if
# desired. This can avoid negative throttle values if drag generated by the base airframe
# is insufficient for the desired descent speed and rate.
analyses.landing.aerodynamics.settings.spoiler_drag_increment = 0.00
segment.altitude_end = 4.0 * Units.km
segment.air_speed = 170.0 * Units['m/s']
segment.descent_rate = 5.0 * Units['m/s']
# Add to mission
mission.append_segment(segment)
# ------------------------------------------------------------------
# Fourth Descent Segment: Constant Speed, Constant Rate
# ------------------------------------------------------------------
segment = Segments.Descent.Constant_Speed_Constant_Rate(base_segment)
segment.tag = "descent_4"
segment.analyses.extend( analyses.landing )
analyses.landing.aerodynamics.settings.spoiler_drag_increment = 0.00
segment.altitude_end = 2.0 * Units.km
segment.air_speed = 150.0 * Units['m/s']
segment.descent_rate = 5.0 * Units['m/s']
# Add to mission
mission.append_segment(segment)
# ------------------------------------------------------------------
# Fifth Descent Segment: Constant Speed, Constant Rate
# ------------------------------------------------------------------
segment = Segments.Descent.Constant_Speed_Constant_Rate(base_segment)
segment.tag = "descent_5"
segment.analyses.extend( analyses.landing )
analyses.landing.aerodynamics.settings.spoiler_drag_increment = 0.00
segment.altitude_end = 0.0 * Units.km
segment.air_speed = 145.0 * Units['m/s']
segment.descent_rate = 3.0 * Units['m/s']
# Append to mission
mission.append_segment(segment)
# ------------------------------------------------------------------
# Mission definition complete
# ------------------------------------------------------------------
return mission
def missions_setup(base_mission):
"""This allows multiple missions to be incorporated if desired, but only one is used here."""
# Setup the mission container
missions = SUAVE.Analyses.Mission.Mission.Container()
# ------------------------------------------------------------------
# Base Mission
# ------------------------------------------------------------------
# Only one mission (the base mission) is defined in this case
missions.base = base_mission
return missions
# ----------------------------------------------------------------------
# Plot Mission
# ----------------------------------------------------------------------
def plot_mission(results,line_style='bo-'):
"""This function plots the results of the mission analysis and saves those results to
png files."""
# Plot Flight Conditions
plot_flight_conditions(results, line_style)
# Plot Aerodynamic Forces
plot_aerodynamic_forces(results, line_style)
# Plot Aerodynamic Coefficients
plot_aerodynamic_coefficients(results, line_style)
# Drag Components
plot_drag_components(results, line_style)
# Plot Altitude, sfc, vehicle weight
plot_altitude_sfc_weight(results, line_style)
# Plot Velocities
plot_aircraft_velocities(results, line_style)
return
# This section is needed to actually run the various functions in the file
if __name__ == '__main__':
main()
# The show commands makes the plots actually appear
plt.show()