-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathconfig_example_ifd.txt
108 lines (71 loc) · 3.32 KB
/
config_example_ifd.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
##############################################################################
#
# example setting file for EstimNetDirected using IFD sampler
#
# note parameter and attribute names are not case sensitive (but filenames are)
#
################## Algorithm constants #######################################
useIFDsampler = true # use the IFD sampler
ifd_K = 0.1 # multiplier for step size of IFD auxiliary parameter
ACA_S = 0.1 # multiplier for step size in Algorithm S
ACA_EE = 1e-09 # multiplier for step size in Algorithm EE
compC = 1e-02 # multiplier of sd(theta)/mean(theta) to limit variance
samplerSteps= 1000 # sampler iterations (per algorithm step)
Ssteps =50 # steps of Algorithm S (multiplied by density adjustment)
EEsteps= 500 # steps of Algorithm EE.
# At each of these outer iterations, the theta step size
# is adjusted (according to compC) to limit the variance
# of the theta values.
EEinnerSteps = 100 # inner iterations of Algorithm EE
outputSimulatedNetwork = True # write the simulated network to file
computeStats = True # compute observed statistics of network and write to file
################## Input filenames ###########################################
# Network in Pajek arc list format. In the Pajek format *vertices at
# top, then followed by one line for each vertex (just vertex number)
# [note this part is optional for EstimeNetDirected] then *arcs
# followed by arcs list one per line.
arclistFile = ../pythonDemo/sample_statistics_n1000_directed_binattr_sim620000000.txt
# Attribute files
# binattr_file for binary attributes (0 or 1 only)
# catattr_file for categorical attributes (any integer)
# The format of the file is a header line with whitespace
# delimited attribute names, and each subsequent line
# the attribute values for each attribute.
# The first line (after the header) has the values for
# node 0, then the next line node 1, and so on.
#
# E.g.:
#
# gender class
# 0 1
# 1 2
# 1 3
binattrFile = ../pythonDemo/binaryAttributes_50_50_n1000.txt
#catattrFile =
################## Output filenames ##########################################
#
# Output filenames are constructed from the prefix specified here,
# with _<rank>.txt added, where <rank> is the MPI rank (task number).
# So e.g. if thetaFilePrefix = theta then the output files are theta_0.txt etc.
#
# Theta (estimated parameter) values output file prefix
thetaFilePrefix = theta_ifd_sim_n1000_sample
# dzA (statistics deltas, which should osciallate about zero at equilibrium)
# values output file prefix
dzAFilePrefix = dzA_ifd_sim_n1000_sample
# Pajek .net file prefix for simulatd network at the end of the EE MCMC process.
simNetFilePrefix = sim_ifd_sim_n1000_sample
# Prefix for observed network statistics filename
observedStatsFilePrefix = obs_stats_ifd_n1000_sample
################## Parameters to estimate ####################################
#
# Structural parameters
#
structParams = { Reciprocity,AltInStars, AltOutStars, AltKTrianglesT,
AltTwoPathsTD }
#
# Attribute parameters
#
attrParams = {Sender(binaryAttribute),
Receiver(binaryAttribute), Interaction(binaryAttribute)}
#attrParams = {Matching(class,class2,class3), MatchingReciprocity(class), MismatchingReciprocity(class), MismatchingReciprocity(class)}