forked from torch/nn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MultiLabelSoftMarginCriterion.lua
44 lines (37 loc) · 1.34 KB
/
MultiLabelSoftMarginCriterion.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
--[[
-- A MultiLabel multiclass criterion based on sigmoid:
--
-- the loss is:
-- l(x,y) = - sum_i y[i] * log(p[i]) + (1 - y[i]) * log (1 - p[i])
-- where p[i] = exp(x[i]) / (1 + exp(x[i]))
--
-- and with weights:
-- l(x,y) = - sum_i weights[i] (y[i] * log(p[i]) + (1 - y[i]) * log (1 - p[i]))
--
--
--]]
local MultiLabelSoftMarginCriterion, parent =
torch.class('nn.MultiLabelSoftMarginCriterion', 'nn.Criterion')
function MultiLabelSoftMarginCriterion:__init(weights)
parent.__init(self)
self.lsm = nn.Sigmoid()
self.nll = nn.BCECriterion(weights)
end
function MultiLabelSoftMarginCriterion:updateOutput(input, target)
input = input:nElement() == 1 and input or input:squeeze()
target = target:nElement() == 1 and target or target:squeeze()
self.lsm:updateOutput(input)
self.nll:updateOutput(self.lsm.output, target)
self.output = self.nll.output
return self.output
end
function MultiLabelSoftMarginCriterion:updateGradInput(input, target)
local size = input:size()
input = input:nElement() ==1 and input or input:squeeze()
target = target:nElement() == 1 and target or target:squeeze()
self.nll:updateGradInput(self.lsm.output, target)
self.lsm:updateGradInput(input, self.nll.gradInput)
self.gradInput:view(self.lsm.gradInput, size)
return self.gradInput
end
return nn.MultiLabelSoftMarginCriterion