forked from torch/nn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
BatchNormalization.lua
195 lines (167 loc) · 5.7 KB
/
BatchNormalization.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
--[[
This file implements Batch Normalization as described in the paper:
"Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift"
by Sergey Ioffe, Christian Szegedy
This implementation is useful for inputs NOT coming from convolution layers.
For convolution layers, use nn.SpatialBatchNormalization.
The operation implemented is:
y = ( x - mean(x) )
-------------------- * gamma + beta
standard-deviation(x)
where gamma and beta are learnable parameters.
The learning of gamma and beta is optional.
Usage:
with learnable parameters: nn.BatchNormalization(N [,eps] [,momentum])
where N = dimensionality of input
without learnable parameters: nn.BatchNormalization(N [,eps] [,momentum], false)
eps is a small value added to the standard-deviation to avoid divide-by-zero.
Defaults to 1e-5
In training time, this layer keeps a running estimate of it's computed mean and std.
The running sum is kept with a default momentum of 0.1 (unless over-ridden)
In test time, this running mean/std is used to normalize.
]]--
local BN,parent = torch.class('nn.BatchNormalization', 'nn.Module')
local THNN = require 'nn.THNN'
BN.__version = 2
-- expected dimension of input
BN.nDim = 2
function BN:__init(nOutput, eps, momentum, affine)
parent.__init(self)
assert(nOutput and type(nOutput) == 'number',
'Missing argument #1: dimensionality of input. ')
assert(nOutput ~= 0, 'To set affine=false call BatchNormalization'
.. '(nOutput, eps, momentum, false) ')
if affine ~= nil then
assert(type(affine) == 'boolean', 'affine has to be true/false')
self.affine = affine
else
self.affine = true
end
self.eps = eps or 1e-5
self.train = true
self.momentum = momentum or 0.1
self.running_mean = torch.zeros(nOutput)
self.running_var = torch.ones(nOutput)
if self.affine then
self.weight = torch.Tensor(nOutput)
self.bias = torch.Tensor(nOutput)
self.gradWeight = torch.Tensor(nOutput)
self.gradBias = torch.Tensor(nOutput)
self:reset()
end
end
function BN:reset()
if self.weight then
self.weight:uniform()
end
if self.bias then
self.bias:zero()
end
self.running_mean:zero()
self.running_var:fill(1)
end
function BN:checkInputDim(input)
assert(input:dim() == self.nDim, string.format(
'only mini-batch supported (%dD tensor), got %dD tensor instead',
self.nDim, input:dim()))
assert(input:size(2) == self.running_mean:nElement(), string.format(
'got %d-feature tensor, expected %d',
input:size(2), self.running_mean:nElement()))
end
local function makeContiguous(self, input, gradOutput)
if not input:isContiguous() then
self._input = self._input or input.new()
self._input:resizeAs(input):copy(input)
input = self._input
end
if gradOutput then
if not gradOutput:isContiguous() then
self._gradOutput = self._gradOutput or gradOutput.new()
self._gradOutput:resizeAs(gradOutput):copy(gradOutput)
gradOutput = self._gradOutput
end
end
return input, gradOutput
end
function BN:updateOutput(input)
self:checkInputDim(input)
input = makeContiguous(self, input)
self.output:resizeAs(input)
self.save_mean = self.save_mean or input.new()
self.save_mean:resizeAs(self.running_mean)
self.save_std = self.save_std or input.new()
self.save_std:resizeAs(self.running_var)
input.THNN.BatchNormalization_updateOutput(
input:cdata(),
self.output:cdata(),
THNN.optionalTensor(self.weight),
THNN.optionalTensor(self.bias),
self.running_mean:cdata(),
self.running_var:cdata(),
self.save_mean:cdata(),
self.save_std:cdata(),
self.train,
self.momentum,
self.eps)
return self.output
end
local function backward(self, input, gradOutput, scale, gradInput, gradWeight, gradBias)
self:checkInputDim(input)
self:checkInputDim(gradOutput)
assert(self.save_mean and self.save_std, 'must call :updateOutput() first')
input, gradOutput = makeContiguous(self, input, gradOutput)
scale = scale or 1
if gradInput then
gradInput:resizeAs(gradOutput)
end
input.THNN.BatchNormalization_backward(
input:cdata(),
gradOutput:cdata(),
THNN.optionalTensor(gradInput),
THNN.optionalTensor(gradWeight),
THNN.optionalTensor(gradBias),
THNN.optionalTensor(self.weight),
self.running_mean:cdata(),
self.running_var:cdata(),
self.save_mean:cdata(),
self.save_std:cdata(),
self.train,
scale,
self.eps)
return self.gradInput
end
function BN:backward(input, gradOutput, scale)
return backward(self, input, gradOutput, scale, self.gradInput, self.gradWeight, self.gradBias)
end
function BN:updateGradInput(input, gradOutput)
return backward(self, input, gradOutput, 1, self.gradInput)
end
function BN:accGradParameters(input, gradOutput, scale)
return backward(self, input, gradOutput, scale, nil, self.gradWeight, self.gradBias)
end
function BN:read(file, version)
parent.read(self, file)
if version < 2 then
if self.running_std then
self.running_var = self.running_std:pow(-2):add(-self.eps)
self.running_std = nil
end
end
end
function BN:clearState()
-- first 5 buffers are not present in the current implementation,
-- but we keep them for cleaning old saved models
nn.utils.clear(self, {
'buffer',
'buffer2',
'centered',
'std',
'normalized',
'_input',
'_gradOutput',
'save_mean',
'save_std',
})
return parent.clearState(self)
end