forked from torch/nn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBilinear.lua
156 lines (136 loc) · 5.47 KB
/
Bilinear.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
local Bilinear, parent = torch.class('nn.Bilinear', 'nn.Module')
local function isint(x) return type(x) == 'number' and x == math.floor(x) end
function Bilinear:__assertInput(input)
assert(input and type(input) == 'table' and #input == 2,
'input should be a table containing two data Tensors')
assert(input[1]:nDimension() == 2 and input[2]:nDimension() == 2,
'input Tensors should be two-dimensional')
assert(input[1]:size(1) == input[2]:size(1),
'input Tensors should have the same number of rows (instances)')
assert(input[1]:size(2) == self.weight:size(2),
'dimensionality of first input is erroneous')
assert(input[2]:size(2) == self.weight:size(3),
'dimensionality of second input is erroneous')
end
function Bilinear:__assertInputGradOutput(input, gradOutput)
assert(input[1]:size(1) == gradOutput:size(1),
'number of rows in gradOutput does not match input')
assert(gradOutput:size(2) == self.weight:size(1),
'number of columns in gradOutput does not output size of layer')
end
function Bilinear:__init(inputSize1, inputSize2, outputSize, bias)
-- assertions:
assert(self and inputSize1 and inputSize2 and outputSize,
'should specify inputSize1 and inputSize2 and outputSize')
assert(isint(inputSize1) and isint(inputSize2) and isint(outputSize),
'inputSize1 and inputSize2 and outputSize should be integer numbers')
assert(inputSize1 > 0 and inputSize2 > 0 and outputSize > 0,
'inputSize1 and inputSize2 and outputSize should be positive numbers')
-- set up model:
parent.__init(self)
local bias = ((bias == nil) and true) or bias
self.weight = torch.Tensor(outputSize, inputSize1, inputSize2)
self.gradWeight = torch.Tensor(outputSize, inputSize1, inputSize2)
if bias then
self.bias = torch.Tensor(outputSize)
self.gradBias = torch.Tensor(outputSize)
end
self.gradInput = {torch.Tensor(), torch.Tensor()}
self:reset()
end
function Bilinear:reset(stdv)
assert(self)
if stdv then
assert(stdv and type(stdv) == 'number' and stdv > 0,
'standard deviation should be a positive number')
stdv = stdv * math.sqrt(3)
else
stdv = 1 / math.sqrt(self.weight:size(2))
end
self.weight:uniform(-stdv, stdv)
if self.bias then self.bias:uniform(-stdv, stdv) end
return self
end
function Bilinear:updateOutput(input)
assert(self)
self:__assertInput(input)
-- set up buffer:
self.buff2 = self.buff2 or input[1].new()
self.buff2:resizeAs(input[2])
-- compute output scores:
self.output:resize(input[1]:size(1), self.weight:size(1))
for k = 1,self.weight:size(1) do
torch.mm(self.buff2, input[1], self.weight[k])
self.buff2:cmul(input[2])
torch.sum(self.output:narrow(2, k, 1), self.buff2, 2)
end
if self.bias then
self.output:add(
self.bias:reshape(1, self.bias:nElement()):expandAs(self.output)
)
end
return self.output
end
function Bilinear:updateGradInput(input, gradOutput)
assert(self)
if self.gradInput then
self:__assertInputGradOutput(input, gradOutput)
-- compute d output / d input:
self.gradInput[1]:resizeAs(input[1]):fill(0)
self.gradInput[2]:resizeAs(input[2]):fill(0)
-- do first slice of weight tensor (k = 1)
self.gradInput[1]:mm(input[2], self.weight[1]:t())
self.gradInput[1]:cmul(gradOutput:narrow(2,1,1):expand(self.gradInput[1]:size(1),
self.gradInput[1]:size(2)))
self.gradInput[2]:addmm(1, input[1], self.weight[1])
self.gradInput[2]:cmul(gradOutput:narrow(2,1,1):expand(self.gradInput[2]:size(1),
self.gradInput[2]:size(2)))
-- do remaining slices of weight tensor
if self.weight:size(1) > 1 then
self.buff1 = self.buff1 or input[1].new()
self.buff1:resizeAs(input[1])
for k = 2, self.weight:size(1) do
self.buff1:mm(input[2], self.weight[k]:t())
self.buff1:cmul(gradOutput:narrow(2,k,1):expand(self.gradInput[1]:size(1),
self.gradInput[1]:size(2)))
self.gradInput[1]:add(self.buff1)
self.buff2:mm(input[1], self.weight[k])
self.buff2:cmul(gradOutput:narrow(2,k,1):expand(self.gradInput[2]:size(1),
self.gradInput[2]:size(2)))
self.gradInput[2]:add(self.buff2)
end
end
return self.gradInput
end
end
function Bilinear:accGradParameters(input, gradOutput, scale)
local scale = scale or 1
self:__assertInputGradOutput(input, gradOutput)
assert(scale and type(scale) == 'number' and scale >= 0)
-- make sure we have buffer:
self.buff1 = self.buff1 or input[1].new()
self.buff1:resizeAs(input[1])
-- accumulate parameter gradients:
for k = 1,self.weight:size(1) do
torch.cmul(
self.buff1, input[1], gradOutput:narrow(2, k, 1):expandAs(input[1])
)
self.gradWeight[k]:addmm(self.buff1:t(), input[2])
end
if self.bias then self.gradBias:add(scale, gradOutput:sum(1)) end
end
-- we do not need to accumulate parameters when sharing:
Bilinear.sharedAccUpdateGradParameters = Bilinear.accUpdateGradParameters
function Bilinear:__tostring__()
return torch.type(self) ..
string.format(
'(%dx%d -> %d) %s',
self.weight:size(2), self.weight:size(3), self.weight:size(1),
(self.bias == nil and ' without bias' or '')
)
end
function Bilinear:clearState()
if self.buff2 then self.buff2:set() end
if self.buff1 then self.buff1:set() end
return parent.clearState(self)
end