forked from thebigpotatoe/node-red-contrib-face-recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
face-api-cmd.js
463 lines (416 loc) · 18.9 KB
/
face-api-cmd.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
// Import the modules
let canvas = require('canvas');
let faceapi = require('face-api.js');
let tfjsLoaded = false;
let modelsLoaded = false;
// Try load in Tfjs-node if it is installed
try {
require('@tensorflow/tfjs-node');
tfjsLoaded = true;
}
catch (err) {
if (err instanceof Error && err.code === "MODULE_NOT_FOUND") {
var infoMsg = "TensorFlow.js for Node.js was not found, running without it";
process.send( {"info" : infoMsg} );
tfjsLoaded = true;
}
else {
var errMsg = "Failed to load in TensorFlow.js for Node.js in child_process: " + err;
process.send( {"warn" : errMsg} );
tfjsLoaded = false;
}
}
// Monkey patch nodejs to faceapi with canvas
const { Canvas, Image, ImageData } = canvas;
faceapi.env.monkeyPatch({ Canvas, Image, ImageData });
// Load the models in at startup
async function loadModels() {
try {
const modelPath = `${__dirname}/weights`;
const ssdMobilenetv1Method = faceapi.nets.ssdMobilenetv1.loadFromDisk(modelPath);
const tinyFaceDetectorMethod = faceapi.nets.tinyFaceDetector.loadFromDisk(modelPath);
const faceLandmark68NetMethod = faceapi.nets.faceLandmark68Net.loadFromDisk(modelPath);
const faceLandmark68TinyNetMethod = faceapi.nets.faceLandmark68TinyNet.loadFromDisk(modelPath);
const faceExpressionNetMethod = faceapi.nets.faceExpressionNet.loadFromDisk(modelPath);
const ageGenderNetMethod = faceapi.nets.ageGenderNet.loadFromDisk(modelPath);
const faceRecognitionNetMethod = faceapi.nets.faceRecognitionNet.loadFromDisk(modelPath);
await ssdMobilenetv1Method;
await tinyFaceDetectorMethod;
await faceLandmark68NetMethod;
await faceLandmark68TinyNetMethod;
await faceExpressionNetMethod;
await ageGenderNetMethod;
await faceRecognitionNetMethod;
modelsLoaded = true;
const infoMsg = "Loaded models";
process.send( {"info" : infoMsg} );
}
catch (error) {
const errorMsg = "Failed to load models";
process.send( {"warn" : errorMsg} );
modelsLoaded = false;
}
}
loadModels();
process.on('message', async function(msg) {
const computeDebug = function (type, inputMsg) {
if (type === "info") {
process.send( {"info" : inputMsg} );
}
else if (type === "warn") {
process.send( {"warn" : inputMsg} );
}
else if (type === "error") {
process.send( {"error" : inputMsg} );
}
};
// Check if the models and tfjs are loaded
if (tfjsLoaded && modelsLoaded){
if ("image" in msg && "node" in msg) {
try {
// Make the node object
const node = msg.node;
// Convert the uint8 array into a buffer
const inputBuffer = Buffer.from(msg.image.data);
if (!Buffer.isBuffer(inputBuffer)) {
var errMsg = "Input msg.payload was not converted to buffer";
process.send( {"error" : errMsg} );
return;
}
// Debug
const startTime = Date.now();
// Turn the image into a Canvas
const img = new Image;
img.onload = async function () {
// Set up the network options
let options
if (node.recognitionType === "SSD") options = new faceapi.SsdMobilenetv1Options({ minConfidence: node.confidence })
else if (node.recognitionType === "Yolo") options = new faceapi.TinyFaceDetectorOptions({ scoreThreshold: node.confidence, inputSize: node.inputSize })
// Make a forward pass of each network for the detections
let detections = null
if (node.multipleFaces === "Multiple Faces") {
// Just Face detection
if (!node.landmarks && !node.expressions && !node.ageGender && !node.recognition) {
detections = await faceapi.detectAllFaces(img, options)
}
// Face detection with either landmarks, expressions, AAG, or descriptors
else if (node.landmarks && !node.expressions && !node.ageGender && !node.recognition) {
detections = await faceapi.detectAllFaces(img, options).withFaceLandmarks()
}
else if (!node.landmarks && node.expressions && !node.ageGender && !node.recognition) {
detections = await faceapi.detectAllFaces(img, options).withFaceExpressions()
}
else if (!node.landmarks && !node.expressions && node.ageGender && !node.recognition) {
detections = await faceapi.detectAllFaces(img, options).withAgeAndGender()
}
else if (!node.landmarks && !node.expressions && !node.ageGender && node.recognition) {
detections = await faceapi.detectAllFaces(img, options).withFaceLandmarks().withFaceDescriptors()
}
// Face detection with landmarks and either expressions, AAG, or descriptors
else if (node.landmarks && node.expressions && !node.ageGender && !node.recognition) {
detections = await faceapi.detectAllFaces(img, options).withFaceLandmarks().withFaceExpressions()
}
else if (node.landmarks && !node.expressions && node.ageGender && !node.recognition) {
detections = await faceapi.detectAllFaces(img, options).withFaceLandmarks().withAgeAndGender()
}
else if (node.landmarks && !node.expressions && !node.ageGender && node.recognition) {
detections = await faceapi.detectAllFaces(img, options).withFaceLandmarks().withFaceDescriptors()
}
// Face detection with landmarks and expressions with either AAG, or descriptors
else if (node.landmarks && node.expressions && node.ageGender && !node.recognition) {
detections = await faceapi.detectAllFaces(img, options).withFaceLandmarks().withFaceExpressions().withAgeAndGender()
}
else if (node.landmarks && node.expressions && !node.ageGender && node.recognition) {
detections = await faceapi.detectAllFaces(img, options).withFaceLandmarks().withFaceExpressions().withFaceDescriptors()
}
// Face detection with landmarks, AAG, and descriptors, but not expressions
else if (node.landmarks && !node.expressions && node.ageGender && node.recognition) {
detections = await faceapi.detectAllFaces(img, options).withFaceLandmarks().withAgeAndGender().withFaceDescriptors()
}
// All possible options
else if (node.landmarks && node.expressions && node.ageGender && node.recognition) {
detections = await faceapi.detectAllFaces(img, options).withFaceLandmarks().withFaceExpressions().withAgeAndGender().withFaceDescriptors()
}
// Else not supported
else {
// Log error
const errorMsg = "Selected configuration of options for compute node \"" + node.name + "\" not supported"
computeDebug("warn", errorMsg)
}
}
else {
// Just Face detection
if (!node.landmarks && !node.expressions && !node.ageGender && !node.recognition) {
detections = await faceapi.detectSingleFace(img, options)
}
// Face detection with either landmarks, expressions, AAG, or descriptors
else if (node.landmarks && !node.expressions && !node.ageGender && !node.recognition) {
detections = await faceapi.detectSingleFace(img, options).withFaceLandmarks()
}
else if (!node.landmarks && node.expressions && !node.ageGender && !node.recognition) {
detections = await faceapi.detectSingleFace(img, options).withFaceExpressions()
}
else if (!node.landmarks && !node.expressions && node.ageGender && !node.recognition) {
detections = await faceapi.detectSingleFace(img, options).withAgeAndGender()
}
else if (!node.landmarks && !node.expressions && !node.ageGender && node.recognition) {
detections = await faceapi.detectSingleFace(img, options).withFaceLandmarks().withFaceDescriptor()
}
// Face detection with landmarks and either expressions, AAG, or descriptors
else if (node.landmarks && node.expressions && !node.ageGender && !node.recognition) {
detections = await faceapi.detectSingleFace(img, options).withFaceLandmarks().withFaceExpressions()
}
else if (node.landmarks && !node.expressions && node.ageGender && !node.recognition) {
detections = await faceapi.detectSingleFace(img, options).withFaceLandmarks().withAgeAndGender()
}
else if (node.landmarks && !node.expressions && !node.ageGender && node.recognition) {
detections = await faceapi.detectSingleFace(img, options).withFaceLandmarks().withFaceDescriptor()
}
// Face detection with landmarks and expressions with either AAG, or descriptors
else if (node.landmarks && node.expressions && node.ageGender && !node.recognition) {
detections = await faceapi.detectSingleFace(img, options).withFaceLandmarks().withFaceExpressions().withAgeAndGender()
}
else if (node.landmarks && node.expressions && !node.ageGender && node.recognition) {
detections = await faceapi.detectSingleFace(img, options).withFaceLandmarks().withFaceExpressions().withFaceDescriptor()
}
// Face detection with landmarks, AAG, and descriptors, but not expressions
else if (node.landmarks && !node.expressions && node.ageGender && node.recognition) {
detections = await faceapi.detectSingleFace(img, options).withFaceLandmarks().withAgeAndGender().withFaceDescriptor()
}
// All possible options
else if (node.landmarks && node.expressions && node.ageGender && node.recognition) {
detections = await faceapi.detectSingleFace(img, options).withFaceLandmarks().withFaceExpressions().withAgeAndGender().withFaceDescriptor()
}
// Else not supported
else {
// Log error
const errorMsg = "Selected configuration of options for compute node \"" + node.name + "\" not supported"
computeDebug("warn", errorMsg)
}
if (detections === undefined) detections = []
else detections = [detections]
}
// Check if there are ny detections
if (detections && typeof detections === 'object' && detections.constructor === Array && detections.length > 0) {
// If recognition is required, check against comparator
if (node.recognition && node.descriptors) {
let nameDescriptor = node.labelName || fileContents.label || "known"
let floatDescriptor = []
// Add each descriptor to an array to add to constructor
node.descriptors.descriptors.forEach(function (array) {
floatDescriptor.push(new Float32Array(array))
})
// Create a new descriptor for the node
const descriptor = new faceapi.LabeledFaceDescriptors(nameDescriptor, floatDescriptor)
const faceMatcher = new faceapi.FaceMatcher(descriptor)
// Check if one or multiple faces require matching
detections.forEach(face => {
let bestDistance = null;
const inputDescriptor = Array.prototype.slice.call(face.descriptor)
// Loop the provided descriptors to compare against the input descriptor
node.descriptors.descriptors.forEach((baseDescriptor) => {
// Create currentDistance to hold value for this iteration
let currentDistance = null;
// Find best match for the chosen distance metric
if (node.recognitionMetric === "Euclidean") { // Smaller is better
const euclideanDistance = require('euclidean')
currentDistance = Math.round(euclideanDistance(baseDescriptor, inputDescriptor)*10000)
}
else if (node.recognitionMetric === "Manhattan") { // Smaller is better
const manhattanDistance = require('manhattan')
currentDistance = Math.round(manhattanDistance(baseDescriptor, inputDescriptor)*1000)
}
else if (node.recognitionMetric === "Chebyshev") { // Smaller is better
const chebyshevDistance = require('chebyshev')
currentDistance = Math.round(chebyshevDistance(baseDescriptor, inputDescriptor)*100000)
}
else if (node.recognitionMetric === "Mean Squared Error") { // Smaller is better
let sum = 0;
for (i = 0; i < inputDescriptor.length; i += 1) {
var error = inputDescriptor[i] - baseDescriptor[i];
sum += error * error;
}
currentDistance = Math.round(sum / inputDescriptor.length * 1000000)
}
// Compare to the best distance found
if (bestDistance == null) bestDistance = currentDistance
else if (bestDistance > currentDistance) bestDistance = currentDistance
})
// Check if the best distance found is below the threshold
face.bestMatch = {
_distance : bestDistance,
_metric : node.recognitionMetric,
_label : (node.recognitionConfidence > bestDistance) ? node.descriptors.label : "unknown"
}
})
}
else if (node.recognition && !node.descriptors) {
// Log error
const errorMsg = "Recognition is selected but there was no descriptor to compare against, please select an image to create a descriptor."
computeDebug("warn", errorMsg)
}
// Draw the information on the image
const drawImage = async function (img, detections) {
// Draw the detection rectangle
const outImg = faceapi.createCanvasFromMedia(img)
// Draw the main box
faceapi.draw.drawDetections(outImg, detections)
// Draw the landmarks if required
if (node.landmarks) faceapi.draw.drawFaceLandmarks(outImg, detections)
// Draw the other optional data
detections.forEach(result => {
// Make label for experssion
const { expressions } = result
let expressionMaxKey = (node.expressions && expressions) ? Object.keys(expressions).reduce(function(a, b){
return expressions[a] > expressions[b] ? a : b
}) : null
const expressionsLabel = (node.expressions) ? [
`${ expressionMaxKey } : ${ faceapi.round(expressions[expressionMaxKey]*100, 0) }%`
] : []
// console.log(expressionsLabel)
// Make label for age and gender
const { age, gender, genderProbability } = result
const ageGenderLabel = (node.ageGender && age && gender && genderProbability) ? [
`${ gender } : ${ faceapi.round(genderProbability*100) }%`,
`${ faceapi.round(age, 0) } years`
] : []
// console.log(ageGenderLabel)
// Add the face recognition confidence
const { bestMatch } = result
const recognitionLabel = (node.recognition && bestMatch) ? [
`${ bestMatch["_label"] } (${ faceapi.round(bestMatch["_distance"], 2) })`,
] : []
// console.log(recognitionLabel)
// Draw the optional Labels for the current face
if (expressionsLabel.length || ageGenderLabel.length || recognitionLabel.length) {
new faceapi.draw.DrawTextField(
[
...expressionsLabel,
...ageGenderLabel,
...recognitionLabel
],
result.detection.box.bottomLeft
).draw(outImg)
}
})
return outImg.toBuffer('image/jpeg')
}
const newImg = await drawImage(img, detections)
// Create msg.payload from the detections object
let msg = {}
msg["faces"] = []
msg["name"] = node.name
msg["image"] = newImg
msg["inferenceTime"] = Date.now() - startTime
detections.forEach(result => {
// Get the info of the base detection
const { detection } = result
const FaceDetection = (detection) ? {
"imageDims" : detection._imageDims,
"score" : detection._score,
"classScore" : detection._classScore,
"className" : detection._className
} : {
"imageDims" : result._imageDims,
"score" : result._score,
"classScore" : result._classScore,
"className" : result._className
}
// Get the landmarks
const { landmarks, unshiftedLandmarks, alignedRect } = result
const FacialLandmarks = (node.landmarks && landmarks && unshiftedLandmarks) ? {
"landmarks" : {
"_imageDims" : landmarks._imageDims,
"_shift" : landmarks._shift,
"_positions" : landmarks._positions
},
"unshiftedLandmarks" : {
"_imageDims" : unshiftedLandmarks._imageDims,
"_shift" : unshiftedLandmarks._shift,
"_positions" : unshiftedLandmarks._positions
},
"alignedRect" : {
"_imageDims" : alignedRect._imageDims,
"_score" : alignedRect._score,
"_classScore" : alignedRect._classScore,
"_className" : alignedRect._className,
"_box" : alignedRect._box,
}
} : null
// Get the expressions and calculate the max score
const { expressions } = result
let expressionMaxKey = (node.expressions && expressions) ? Object.keys(expressions).reduce(function(a, b){
return expressions[a] > expressions[b] ? a : b
}) : null
const FacialExpressions = (expressions) ? {
"expressionLabel" : expressionMaxKey,
"expressionScore" : expressions[expressionMaxKey],
"expressions" : {
"neutral": expressions.neutral,
"happy": expressions.happy,
"sad": expressions.sad,
"angry": expressions.angry,
"fearful": expressions.fearful,
"disgusted": expressions.disgusted,
"surprised": expressions.surprised
}
} : null
// Get the age and gender results
const { age, gender, genderProbability } = result
const AgeAndGender = (node.ageGender && age && gender && genderProbability) ? {
"gender" : gender,
"age" : age,
"genderProbability" : genderProbability
} : null
// Get the Face recognition scores
const { bestMatch, descriptor } = result
const BestMatch = (node.recognition && bestMatch && descriptor) ? {
"matchedLabel" : bestMatch._label,
"matchedDistance" : bestMatch._distance,
"matchedMetric" : bestMatch._metric,
"descriptor" : descriptor
} : null
// Concat the objects to create output message
msg.faces.push({
...FaceDetection,
...FacialLandmarks,
...FacialExpressions,
...AgeAndGender,
...BestMatch
})
})
// Callback with the new message
process.send( msg );
}
else if (detections && typeof detections === 'object' && detections.constructor === Array && detections.length == 0) {
let msg = {}
msg["faces"] = []
msg["name"] = node.name
msg["image"] = inputBuffer
msg["inferenceTime"] = Date.now() - startTime
process.send( msg );
}
else {
// Log error
const errorMsg = "No detections found for input"
computeDebug("warn", errorMsg)
}
};
img.onerror = err => {
const errorMsg = "Failed to load input image into Canvas";
computeDebug("error", errorMsg)
};
img.src = inputBuffer;
}
catch (error) {
// Log error
const errorMsg = "Error computing detections: " + error
computeDebug("error", errorMsg)
}
}
else {
const errorMsg = "Image or node not sent in message to child"
computeDebug("warn", errorMsg )
}
}
});