Skip to content

stefanutti/maps-coloring-python

Repository files navigation

Hi all,

the Homepage where you can read the whole story is here: https://4coloring.wordpress.com

Example of what the program does

This is an example of a graph colored with the Python program:

The graph has 1996 vertices and 2994 edges and, starting from the planar representation of it, it took about 10 seconds to be colored:

The input .dot file used can be downloaded here: Test-1996-Vertices-2994-Edges.dot

  • From an .edgelist graph (networkx) I generated an embedding of the graph on the plane. I used the Sage function is_planar(set_embedding = True))
  • Then, from the planar representation of the original graph I used my algorithm

Note:

  • The .dot file can be used to test other algorithms. If you know faster algorithms to color it please let me know

Definition of "planar embedding":

  • A combinatorial embedding of a graph is a clockwise ordering of the neighbors of each vertex. From this information one can define the faces of the embedding, which is what this method returns
    • Planar representation example:
      • graphs.TetrahedralGraph().faces()
        • [[(0, 1), (1, 2), (2, 0)], [(3, 2), (2, 1), (1, 3)], [(2, 3), (3, 0), (0, 2)], [(0, 3), (3, 1), (1, 0)]]

YouTube videos

Some videos of the running Python and Java programs:

Pre-requirements

  • docker

Download a Docker instance (I used sagemath version = 9.0 with python 3.7, but you can try using latest) - ONLY ONCE

  • docker run -it sagemath/sagemath:9.0 bash
  • Alternative
    • docker run -it --name 4ct -p 8888:8888 -p 5000:5000 -p 7777:7777 sagemath/sagemath:9.0 sage-jupyter

Enter into the Docker instance

  • docker exec -it 4ct bash

Updates - ONLY ONCE

  • sudo apt-get update
  • sudo apt-get install git
  • sudo apt-get install vim

Download personal repo - ONLY ONCE

Run 4ct.py

  • cd
  • cd prj
  • cd maps-coloring-python
  • cd ct
  • sage 4ct.py --help
  • sage 4ct.py -r 100
    • Random graph: dual of a triangulation of N vertices
  • other parameters (see at the end of this doc)
    • -i <file .edgelist> (Load a .edgelist file - networkx)
    • -p <file .serialized> (Load a .serialized planar embedding of the graph)
    • -o (Save a .edgelist file (networkx), plus a .dot file (networkx)
    • ...

Run ct_create_random_maps_from_2v.py

  • cd
  • cd prj
  • cd maps-coloring-python
  • cd ct
  • python3 ct_create_random_maps_from_2v.py -v 100 -o new_map_test_100.planar
  • sage 4ct.py -p new_map_test_100.planar

Run ct_convert_planar_to_other.py

  • Dependencies
    • pip3 install networkx
    • pip3 install pydot
  • cd
  • cd prj
  • cd maps-coloring-python
  • cd ct
  • python3 ct_convert_planar_to_other.py -p new_map_test_100.planar -o new_map_test_100

Useful for cut&paste:

  • sudo apt-get install python3
  • sudo apt-get -y install python3-pip
  • pip install Flask

To be finished:

  • What I've done that needs to be changed:
    • Generated a large planar triangulation using sage RandomTriangulation (fast)
    • Generated the dual of the planar triangulation, which is planar too (fast)
    • Now, to get the list of faces() sage needs to elaborate le planarity of the graph (very slow)
  • I need other approaches, possibly not using sage
    • Implementation of the Bowyer-Watson algorithm to compute the Delaunay triangulation and the Voronoi diagram of a set o 2D points
    • By hand
      • Generate a large planar triangulation with libs that are not sage (fast)
      • Generate the dual of the planar triangulation, which is planar too (fast)
      • Manually compute the faces() representation of the graph

Bye

sage 4ct.py --help
usage: 4ct.py [-h] (-r RAND | -e EDGELIST | -p PLANAR) [-o OUTPUT]
              [-c {2345,2354,2435,2453,2534,2543}] [-s]

4ct args

optional arguments:
  -h, --help            show this help message and exit
  -r RAND, --rand RAND  Random graph: dual of a triangulation of N vertices
  -e EDGELIST, --edgelist EDGELIST
                        Load a .edgelist file (networkx)
  -p PLANAR, --planar PLANAR
                        Load a planar embedding (json) of the graph G.faces()
                        - Automatically saved at each run
  -o OUTPUT, --output OUTPUT
                        Save a .edgelist file (networkx), plus a .dot file
                        (networkx). Specify the file without extension
  -c {2345,2354,2435,2453,2534,2543}, --choices {2345,2354,2435,2453,2534,2543}
                        Sequence of the Fs to choose (2345, 2354, 2435, 2453,
                        2534, 2543)
  -s, --shuffle         Shuffle the list at the beginning. Most of the times
                        it solves the infinite loop condition

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages