Round each component of a double-precision complex floating-point number to the nearest multiple of
10^n
.
var croundn = require( '@stdlib/math/base/special/croundn' );
Rounds each component of a double-precision complex floating-point number to the nearest multiple of 10^n
.
var Complex128 = require( '@stdlib/complex/float64' );
var real = require( '@stdlib/complex/real' );
var imag = require( '@stdlib/complex/imag' );
var v = croundn( new Complex128( -3.141592653589793, 3.141592653589793 ), -2 );
// returns <Complex128>
var re = real( v );
// returns -3.14
var im = imag( v );
// returns 3.14
v = croundn( new Complex128( -3.141592653589793, 3.141592653589793 ), 0 );
// returns <Complex128>
re = real( v );
// returns -3.0
im = imag( v );
// returns 3.0
v = croundn( new Complex128( -12368.0, 12368.0 ), 3 );
// returns <Complex128>
re = real( v );
// returns -12000.0
im = imag( v );
// returns 12000.0
v = croundn( new Complex128( NaN, NaN ), 3 );
// returns <Complex128>
re = real( v );
// returns NaN
im = imag( v );
// returns NaN
-
When operating on floating-point numbers in bases other than
2
, rounding to specified digits can be inexact. For example,var Complex128 = require( '@stdlib/complex/float64' ); var real = require( '@stdlib/complex/real' ); var imag = require( '@stdlib/complex/imag' ); var x = 0.2 + 0.1; // returns 0.30000000000000004 // Should round components to 0.3: var v = croundn( new Complex128( x, x ), -16 ); // returns <Complex128> var re = real( v ); // returns 0.3000000000000001 var im = imag( v ); // returns 0.3000000000000001
var uniform = require( '@stdlib/random/base/uniform' ).factory;
var Complex128 = require( '@stdlib/complex/float64' );
var floor = require( '@stdlib/math/base/special/floor' );
var croundn = require( '@stdlib/math/base/special/croundn' );
var rand1 = uniform( -5.0, 0.0 );
var rand2 = uniform( -50.0, 50.0 );
var z;
var i;
var n;
for ( i = 0; i < 100; i++ ) {
z = new Complex128( rand2(), rand2() );
n = floor( rand1() );
console.log( 'croundn(%s, %s) = %s', z, n, croundn( z, n ) );
}
#include "stdlib/math/base/special/croundn.h"
Rounds each component of a double-precision complex floating-point number to the nearest multiple of 10^n
.
#include "stdlib/complex/float64.h"
#include "stdlib/complex/real.h"
#include "stdlib/complex/imag.h"
stdlib_complex128_t z = stdlib_complex128( -3.141592653589793, 3.141592653589793 );
stdlib_complex128_t out = stdlib_base_croundn( z );
double re = stdlib_real( out );
// returns -3.14
double im = stdlib_imag( out );
// returns 3.14
The function accepts the following arguments:
- z:
[in] stdlib_complex128_t
input value. - n:
[in] int32_t
integer power of 10.
stdlib_complex128_t stdlib_base_croundn( const stdlib_complex128_t z, const int32_t n );
#include "stdlib/math/base/special/croundn.h"
#include "stdlib/complex/float64.h"
#include "stdlib/complex/reim.h"
#include <stdio.h>
int main( void ) {
const stdlib_complex128_t x[] = {
stdlib_complex128( 3.14, 1.5 ),
stdlib_complex128( -3.14, -1.5 ),
stdlib_complex128( 0.0, 0.0 ),
stdlib_complex128( 0.0/0.0, 0.0/0.0 )
};
stdlib_complex128_t v;
stdlib_complex128_t y;
double re1;
double im1;
double re2;
double im2;
int i;
for ( i = 0; i < 4; i++ ) {
v = x[ i ];
y = stdlib_base_croundn( v, -2 );
stdlib_reim( v, &re1, &im1 );
stdlib_reim( y, &re2, &im2 );
printf( "croundn(%lf + %lfi) = %lf + %lfi\n", re1, im1, re2, im2 );
}
}
@stdlib/math/base/special/cceiln
: round each component of a double-precision complex floating-point number to the nearest multiple of 10^n toward positive infinity.@stdlib/math/base/special/cfloorn
: round each component of a double-precision complex floating-point number to the nearest multiple of 10^n toward negative infinity.@stdlib/math/base/special/cround
: round each component of a double-precision complex floating-point number to the nearest integer.