Skip to content

Latest commit

 

History

History

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

betaln

Natural logarithm of the beta function.

The beta function, also called the Euler integral, is defined as

$$\mathop{\mathrm{Beta}}(x,y) = \int_0^1t^{x-1}(1-t)^{y-1}\,\mathrm{d}t$$

The beta function is related to the gamma function via the following equation

$$\mathop{\mathrm{Beta}}(x,y)=\dfrac{\Gamma(x)\,\Gamma(y)}{\Gamma(x+y)} \!$$

Usage

var betaln = require( '@stdlib/math/base/special/betaln' );

betaln( x, y )

Evaluates the the natural logarithm of the beta function.

var val = betaln( 0.0, 0.0 );
// returns Infinity

val = betaln( 1.0, 1.0 );
// returns 0.0

val = betaln( -1.0, 2.0 );
// returns NaN

val = betaln( 5.0, 0.2 );
// returns ~1.218

val = betaln( 4.0, 1.0 );
// returns ~-1.386

Examples

var betaln = require( '@stdlib/math/base/special/betaln' );
var x;
var y;

for ( x = 0; x < 10; x++ ) {
    for ( y = 10; y > 0; y-- ) {
        console.log( 'x: %d, \t y: %d, \t f(x,y): %d', x, y, betaln( x, y ) );
    }
}

See Also