Skip to content

feat: add ndarray/base/find #7426

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 30 commits into
base: develop
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
30 commits
Select commit Hold shift + click to select a range
b97de57
feat: add ndarray/base/find
headlessNode Jun 20, 2025
dcab5b7
feat: add nd kernels
headlessNode Jun 20, 2025
66764f1
docs: fix return value
headlessNode Jun 20, 2025
12a4b61
fix: lint errors
headlessNode Jun 21, 2025
76a9ba1
fix: lint error
headlessNode Jun 21, 2025
44f5cba
fix: lint error
headlessNode Jun 21, 2025
fa9ef2a
fix: lint errors
headlessNode Jun 21, 2025
d650d02
bench: make consistent & worst case scenario
headlessNode Jun 21, 2025
2ca2802
chore: make consistent
headlessNode Jun 21, 2025
f7fe883
test: add tests upto 2d
headlessNode Jun 21, 2025
a776c3b
refactor: add sentinel cases
headlessNode Jun 25, 2025
c9734b5
test: add 3d tests
headlessNode Jun 25, 2025
79eb09a
refactor: use as sentinel
headlessNode Jun 25, 2025
c62bd4d
docs: apply code review suggestions
headlessNode Jul 2, 2025
5dc4859
bench: apply suggestions from code review
headlessNode Jul 2, 2025
6c4416b
refactor: apply suggestions from code review
headlessNode Jul 2, 2025
4768153
feat: add 4d kernels
headlessNode Jul 2, 2025
f2ee3dc
feat: add 5d kernels
headlessNode Jul 2, 2025
f75fe1b
feat: add 6d kernels
headlessNode Jul 2, 2025
85b845d
feat: add 7d kernels
headlessNode Jul 2, 2025
d7f8d34
feat: add 8d kernels
headlessNode Jul 2, 2025
2abe234
feat: add 9d kernels
headlessNode Jul 2, 2025
eecb8c9
feat: add 10d kernels
headlessNode Jul 2, 2025
a17f0a4
bench: add benchmarks upto 5d
headlessNode Jul 2, 2025
3a31376
bench: add 6d benchmarks
headlessNode Jul 2, 2025
1595c41
bench: add 7d benchmarks
headlessNode Jul 2, 2025
3d2d0cf
bench: add 8d benchmarks
headlessNode Jul 2, 2025
6cd22c0
bench: add 9d benchmarks
headlessNode Jul 2, 2025
48360d7
bench: add 10d benchmarks
headlessNode Jul 2, 2025
b55394c
bench: add 11d benchmarks
headlessNode Jul 2, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
246 changes: 246 additions & 0 deletions lib/node_modules/@stdlib/ndarray/base/find/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,246 @@
<!--

@license Apache-2.0

Copyright (c) 2025 The Stdlib Authors.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

# find

> Return the first element in an ndarray which passes a test implemented by a predicate function.

<section class="intro">

</section>

<!-- /.intro -->

<section class="usage">

## Usage

<!-- eslint-disable no-redeclare -->

```javascript
var find = require( '@stdlib/ndarray/base/find' );
```

<!-- eslint-enable no-redeclare -->

#### find( arrays, predicate\[, thisArg] )

Returns the first element in an ndarray which passes a test implemented by a predicate function.

<!-- eslint-disable max-len -->

```javascript
var Float64Array = require( '@stdlib/array/float64' );

function isEven( value ) {
return value % 2.0 === 0.0;
}

// Create a data buffer:
var xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );

// Define the shape of the input array:
var shape = [ 3, 1, 2 ];

// Define the array strides:
var sx = [ 4, 4, 1 ];

// Define the index offset:
var ox = 0;

// Create the input ndarray-like object:
var x = {
'dtype': 'float64',
'data': xbuf,
'shape': shape,
'strides': sx,
'offset': ox,
'order': 'row-major'
};

// Create the sentinel value ndarray-like object:
var sentinelValue = {
'dtype': 'float64',
'data': new Float64Array( [ NaN ] ),
'shape': [],
'strides': [ 0 ],
'offset': 0,
'order': 'row-major'
};

// Perform reduction:
var out = find( [ x, sentinelValue ], isEven );
// returns 2.0
```

The function accepts the following arguments:

- **arrays**: array-like object containing an input ndarray and a zero-dimensional ndarray containing a sentinel value which should be returned when no element in an input ndarray passes a test implemented by the predicate function.
- **predicate**: predicate function.
- **thisArg**: predicate function execution context (_optional_).

Each provided ndarray should be an object with the following properties:

- **dtype**: data type.
- **data**: data buffer.
- **shape**: dimensions.
- **strides**: stride lengths.
- **offset**: index offset.
- **order**: specifies whether an ndarray is row-major (C-style) or column major (Fortran-style).

The predicate function is provided the following arguments:

- **value**: current array element.
- **indices**: current array element indices.
- **arr**: the input ndarray.

To set the predicate function execution context, provide a `thisArg`.

<!-- eslint-disable no-invalid-this, max-len -->

```javascript
var Float64Array = require( '@stdlib/array/float64' );

function isEven( value ) {
this.count += 1;
return value % 2.0 === 0.0;
}

// Create a data buffer:
var xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );

// Define the shape of the input array:
var shape = [ 3, 1, 2 ];

// Define the array strides:
var sx = [ 4, 4, 1 ];

// Define the index offset:
var ox = 0;

// Create the input ndarray-like object:
var x = {
'dtype': 'float64',
'data': xbuf,
'shape': shape,
'strides': sx,
'offset': ox,
'order': 'row-major'
};

// Create the sentinel value ndarray-like object:
var sentinelValue = {
'dtype': 'float64',
'data': new Float64Array( [ NaN ] ),
'shape': [],
'strides': [ 0 ],
'offset': 0,
'order': 'row-major'
};

var ctx = {
'count': 0
};

// Test elements:
var out = find( [ x, sentinelValue ], isEven, ctx );
// returns 2.0

var count = ctx.count;
// returns 2
```

</section>

<!-- /.usage -->

<section class="notes">

## Notes

- For very high-dimensional ndarrays which are non-contiguous, one should consider copying the underlying data to contiguous memory before performing the operation in order to achieve better performance.

</section>

<!-- /.notes -->

<section class="examples">

## Examples

<!-- eslint no-undef: "error" -->

```javascript
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var Float64Array = require( '@stdlib/array/float64' );
var ndarray2array = require( '@stdlib/ndarray/base/to-array' );
var find = require( '@stdlib/ndarray/base/find' );

function isEven( value ) {
return value % 2.0 === 0.0;
}

var x = {
'dtype': 'float64',
'data': discreteUniform( 10, 0.0, 10.0, {
'dtype': 'float64'
}),
'shape': [ 5, 2 ],
'strides': [ 2, 1 ],
'offset': 0,
'order': 'row-major'
};
console.log( ndarray2array( x.data, x.shape, x.strides, x.offset, x.order ) );

var sv = {
'dtype': 'float64',
'data': new Float64Array( [ NaN ] ),
'shape': [],
'strides': [ 0 ],
'offset': 0,
'order': x.order
};
console.log( 'Sentinel Value: %d', sv.data[ 0 ] );

var out = find( [ x, sv ], isEven );
console.log( out );
```

</section>

<!-- /.examples -->

<!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. -->

<section class="related">

</section>

<!-- /.related -->

<section class="links">

<!-- <related-links> -->

<!-- </related-links> -->

</section>

<!-- /.links -->
Original file line number Diff line number Diff line change
@@ -0,0 +1,147 @@
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

'use strict';

/* eslint-disable stdlib/no-redeclare */

// MODULES //

var bench = require( '@stdlib/bench' );
var isInteger = require( '@stdlib/math/base/assert/is-integer' );
var pow = require( '@stdlib/math/base/special/pow' );
var floor = require( '@stdlib/math/base/special/floor' );
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var shape2strides = require( '@stdlib/ndarray/base/shape2strides' );
var pkg = require( './../package.json' ).name;
var find = require( './../lib/10d_blocked.js' );


// VARIABLES //

var types = [ 'float64' ];
var order = 'column-major';


// FUNCTIONS //

/**
* Callback function.
*
* @param {*} value - ndarray element
* @returns {boolean} result
*/
function clbk( value ) {
return value < 0.0;
}

/**
* Creates a benchmark function.
*
* @private
* @param {PositiveInteger} len - ndarray length
* @param {NonNegativeIntegerArray} shape - ndarray shape
* @param {string} xtype - ndarray data type
* @returns {Function} benchmark function
*/
function createBenchmark( len, shape, xtype ) {
var x;

x = discreteUniform( len, 1, 100, {
'dtype': xtype
});
x = {
'dtype': xtype,
'data': x,
'shape': shape,
'strides': shape2strides( shape, order ),
'offset': 0,
'order': order
};
return benchmark;

/**
* Benchmark function.
*
* @private
* @param {Benchmark} b - benchmark instance
*/
function benchmark( b ) {
var out;
var i;

b.tic();
for ( i = 0; i < b.iterations; i++ ) {
out = find( x, NaN, clbk );
if ( isInteger( out ) ) {
b.fail( 'should not return an integer' );
}
}
b.toc();
if ( isInteger( out ) ) {
b.fail( 'should not return an integer' );
}
b.pass( 'benchmark finished' );
b.end();
}
}


// MAIN //

/**
* Main execution sequence.
*
* @private
*/
function main() {
var len;
var min;
var max;
var sh;
var t1;
var f;
var i;
var j;

min = 1; // 10^min
max = 6; // 10^max

for ( j = 0; j < types.length; j++ ) {
t1 = types[ j ];
for ( i = min; i <= max; i++ ) {
len = pow( 10, i );

sh = [ len/2, 2, 1, 1, 1, 1, 1, 1, 1, 1 ];
f = createBenchmark( len, sh, t1 );
bench( pkg+'::blocked:ndims='+sh.length+',len='+len+',shape=['+sh.join(',')+'],xorder='+order+',xtype='+t1, f );

sh = [ 1, 1, 1, 1, 1, 1, 1, 1, 2, len/2 ];
f = createBenchmark( len, sh, t1 );
bench( pkg+'::blocked:ndims='+sh.length+',len='+len+',shape=['+sh.join(',')+'],xorder='+order+',xtype='+t1, f );

len = floor( pow( len, 1.0/10.0 ) );
sh = [ len, len, len, len, len, len, len, len, len, len ];
len *= pow( len, 9 );
f = createBenchmark( len, sh, t1 );
bench( pkg+'::blocked:ndims='+sh.length+',len='+len+',shape=['+sh.join(',')+'],xorder='+order+',xtype='+t1, f );
}
}
}

main();
Loading
Loading