@@ -31,10 +31,10 @@ interface Routine {
31
31
* - the input vector is `[alpha; x]`, where `alpha` is a scalar and `x` is a real `(n-1)`-element vector.
32
32
* - the result of applying `H` to `[alpha; x]` is `[beta; 0]`, with `beta` being a scalar and the rest of the vector zeroed.
33
33
* - if all elements of `x` are zero, then `tau = 0` and `H` is the identity matrix.
34
- * - otherwise, `1 <= tau <= 2` and `H` is orthogonal, i.e., `H^T * H = I`.
34
+ * - otherwise, `1 <= tau <= 2`
35
35
*
36
36
* @param N - order of matrix `A`
37
- * @param X - overwritten by the vector `V` on exit
37
+ * @param X - overwritten by the vector `V` on exit, expects `N - 1` indexed elements
38
38
* @param incx - stride length for `X`
39
39
* @param out - array to store `alpha` and `tau`, first indexed element stores `alpha` and the second indexed element stores `tau`
40
40
* @returns overwrites the array `X` and `out` in place
@@ -60,10 +60,10 @@ interface Routine {
60
60
* - the input vector is `[alpha; x]`, where `alpha` is a scalar and `x` is a real `(n-1)`-element vector.
61
61
* - the result of applying `H` to `[alpha; x]` is `[beta; 0]`, with `beta` being a scalar and the rest of the vector zeroed.
62
62
* - if all elements of `x` are zero, then `tau = 0` and `H` is the identity matrix.
63
- * - otherwise, `1 <= tau <= 2` and `H` is orthogonal, i.e., `H^T * H = I`.
63
+ * - otherwise, `1 <= tau <= 2`
64
64
*
65
65
* @param N - order of matrix `A`
66
- * @param X - overwritten by the vector `V` on exit
66
+ * @param X - overwritten by the vector `V` on exit, expects `N - 1` indexed elements
67
67
* @param strideX - stride length for `X`
68
68
* @param offsetX - starting index of `X`
69
69
* @param out - array to store `alpha` and `tau`, first indexed element stores `alpha` and the second indexed element stores `tau`
@@ -93,10 +93,10 @@ interface Routine {
93
93
* - the input vector is `[alpha; x]`, where `alpha` is a scalar and `x` is a real `(n-1)`-element vector.
94
94
* - the result of applying `H` to `[alpha; x]` is `[beta; 0]`, with `beta` being a scalar and the rest of the vector zeroed.
95
95
* - if all elements of `x` are zero, then `tau = 0` and `H` is the identity matrix.
96
- * - otherwise, `1 <= tau <= 2` and `H` is orthogonal, i.e., `H^T * H = I`.
96
+ * - otherwise, `1 <= tau <= 2`
97
97
*
98
98
* @param N - order of matrix `A`
99
- * @param X - overwritten by the vector `V` on exit
99
+ * @param X - overwritten by the vector `V` on exit, expects `N - 1` indexed elements
100
100
* @param incx - stride length for `X`
101
101
* @param out - array to store `alpha` and `tau`, first indexed element stores `alpha` and the second indexed element stores `tau`
102
102
* @returns overwrites the array `X` and `out` in place
0 commit comments