Skip to content

Commit e54a830

Browse files
committed
Auto-generated commit
1 parent b2931b4 commit e54a830

File tree

2 files changed

+5
-4
lines changed

2 files changed

+5
-4
lines changed

CHANGELOG.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,14 +4,15 @@
44
55
<section class="release" id="unreleased">
66

7-
## Unreleased (2025-03-29)
7+
## Unreleased (2025-03-30)
88

99
<section class="commits">
1010

1111
### Commits
1212

1313
<details>
1414

15+
- [`c1fafe5`](https://github.com/stdlib-js/stdlib/commit/c1fafe52737f51ca58d6d86ec43fda081bf755e4) - **refactor:** update paths _(by Aayush Khanna)_
1516
- [`2515c03`](https://github.com/stdlib-js/stdlib/commit/2515c03c11d75901db325c3d2d417fba4073110a) - **refactor:** update paths _(by Aayush Khanna)_
1617

1718
</details>

README.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -216,7 +216,7 @@ var v = stdevtk.ndarray( N, 1, x, 2, 1 );
216216
- If `N <= 0`, both functions return `NaN`.
217217
- If `N - c` is less than or equal to `0` (where `c` corresponds to the provided degrees of freedom adjustment), both functions return `NaN`.
218218
- Some caution should be exercised when using the one-pass textbook algorithm. Literature overwhelmingly discourages the algorithm's use for two reasons: 1) the lack of safeguards against underflow and overflow and 2) the risk of catastrophic cancellation when subtracting the two sums if the sums are large and the variance small. These concerns have merit; however, the one-pass textbook algorithm should not be dismissed outright. For data distributions with a moderately large standard deviation to mean ratio (i.e., **coefficient of variation**), the one-pass textbook algorithm may be acceptable, especially when performance is paramount and some precision loss is acceptable (including a risk of computing a negative variance due to floating-point rounding errors!). In short, no single "best" algorithm for computing the standard deviation exists. The "best" algorithm depends on the underlying data distribution, your performance requirements, and your minimum precision requirements. When evaluating which algorithm to use, consider the relative pros and cons, and choose the algorithm which best serves your needs.
219-
- Depending on the environment, the typed versions ([`dstdevtk`][@stdlib/stats/strided/dstdevtk], [`sstdevtk`][@stdlib/stats/base/sstdevtk], etc.) are likely to be significantly more performant.
219+
- Depending on the environment, the typed versions ([`dstdevtk`][@stdlib/stats/strided/dstdevtk], [`sstdevtk`][@stdlib/stats/strided/sstdevtk], etc.) are likely to be significantly more performant.
220220

221221
</section>
222222

@@ -273,7 +273,7 @@ console.log( v );
273273

274274
- <span class="package-name">[`@stdlib/stats-strided/dstdevtk`][@stdlib/stats/strided/dstdevtk]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array using a one-pass textbook algorithm.</span>
275275
- <span class="package-name">[`@stdlib/stats-base/nanstdevtk`][@stdlib/stats/base/nanstdevtk]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a strided array ignoring NaN values and using a one-pass textbook algorithm.</span>
276-
- <span class="package-name">[`@stdlib/stats-base/sstdevtk`][@stdlib/stats/base/sstdevtk]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a single-precision floating-point strided array using a one-pass textbook algorithm.</span>
276+
- <span class="package-name">[`@stdlib/stats-strided/sstdevtk`][@stdlib/stats/strided/sstdevtk]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a single-precision floating-point strided array using a one-pass textbook algorithm.</span>
277277
- <span class="package-name">[`@stdlib/stats-base/stdev`][@stdlib/stats/base/stdev]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a strided array.</span>
278278
- <span class="package-name">[`@stdlib/stats-base/variancetk`][@stdlib/stats/base/variancetk]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array using a one-pass textbook algorithm.</span>
279279

@@ -367,7 +367,7 @@ Copyright &copy; 2016-2025. The Stdlib [Authors][stdlib-authors].
367367

368368
[@stdlib/stats/base/nanstdevtk]: https://github.com/stdlib-js/stats-base-nanstdevtk
369369

370-
[@stdlib/stats/base/sstdevtk]: https://github.com/stdlib-js/stats-base-sstdevtk
370+
[@stdlib/stats/strided/sstdevtk]: https://github.com/stdlib-js/stats-strided-sstdevtk
371371

372372
[@stdlib/stats/base/stdev]: https://github.com/stdlib-js/stats-base-stdev
373373

0 commit comments

Comments
 (0)