Calculate the arithmetic mean of a strided array using Welford's algorithm.
The arithmetic mean is defined as
npm install @stdlib/stats-base-meanwd
Alternatively,
- To load the package in a website via a
script
tag without installation and bundlers, use the ES Module available on theesm
branch. - If you are using Deno, visit the
deno
branch. - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umd
branch.
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
var meanwd = require( '@stdlib/stats-base-meanwd' );
Computes the arithmetic mean of a strided array x
using Welford's algorithm.
var x = [ 1.0, -2.0, 2.0 ];
var N = x.length;
var v = meanwd( N, x, 1 );
// returns ~0.3333
The function has the following parameters:
- N: number of indexed elements.
- x: input
Array
ortyped array
. - stride: index increment for
x
.
The N
and stride
parameters determine which elements in x
are accessed at runtime. For example, to compute the arithmetic mean of every other element in x
,
var floor = require( '@stdlib/math-base-special-floor' );
var x = [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ];
var N = floor( x.length / 2 );
var v = meanwd( N, x, 2 );
// returns 1.25
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float64Array = require( '@stdlib/array-float64' );
var floor = require( '@stdlib/math-base-special-floor' );
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var N = floor( x0.length / 2 );
var v = meanwd( N, x1, 2 );
// returns 1.25
Computes the arithmetic mean of a strided array using Welford's algorithm and alternative indexing semantics.
var x = [ 1.0, -2.0, 2.0 ];
var N = x.length;
var v = meanwd.ndarray( N, x, 1, 0 );
// returns ~0.33333
The function has the following additional parameters:
- offset: starting index for
x
.
While typed array
views mandate a view offset based on the underlying buffer
, the offset
parameter supports indexing semantics based on a starting index. For example, to calculate the arithmetic mean for every other value in x
starting from the second value
var floor = require( '@stdlib/math-base-special-floor' );
var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ];
var N = floor( x.length / 2 );
var v = meanwd.ndarray( N, x, 2, 1 );
// returns 1.25
var randu = require( '@stdlib/random-base-randu' );
var round = require( '@stdlib/math-base-special-round' );
var Float64Array = require( '@stdlib/array-float64' );
var meanwd = require( '@stdlib/stats-base-meanwd' );
var x;
var i;
x = new Float64Array( 10 );
for ( i = 0; i < x.length; i++ ) {
x[ i ] = round( (randu()*100.0) - 50.0 );
}
console.log( x );
var v = meanwd( x.length, x, 1 );
console.log( v );
- Welford, B. P. 1962. "Note on a Method for Calculating Corrected Sums of Squares and Products." Technometrics 4 (3). Taylor & Francis: 419–20. doi:10.1080/00401706.1962.10490022.
- van Reeken, A. J. 1968. "Letters to the Editor: Dealing with Neely's Algorithms." Communications of the ACM 11 (3): 149–50. doi:10.1145/362929.362961.
@stdlib/stats/base/dmeanwd
: calculate the arithmetic mean of a double-precision floating-point strided array using Welford's algorithm.@stdlib/stats/base/mean
: calculate the arithmetic mean of a strided array.@stdlib/stats/base/nanmeanwd
: calculate the arithmetic mean of a strided array, ignoring NaN values and using Welford's algorithm.@stdlib/stats/base/smeanwd
: calculate the arithmetic mean of a single-precision floating-point strided array using Welford's algorithm.
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2022. The Stdlib Authors.