Skip to content

Compute the inverse of a single-precision complex floating-point number.

License

Notifications You must be signed in to change notification settings

stdlib-js/math-base-special-cinvf

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

cinvf

NPM version Build Status Coverage Status

Compute the inverse of a single-precision complex floating-point number.

The inverse (or reciprocal) of a non-zero complex number z = a + bi is defined as

$${\frac {1}{z}}=\frac{\bar{z}}{z{\bar{z}}} = \frac{a}{a^{2}+b^{2}} - \frac{b}{a^2+b^2}i.$$

Installation

npm install @stdlib/math-base-special-cinvf

Alternatively,

  • To load the package in a website via a script tag without installation and bundlers, use the ES Module available on the esm branch (see README).
  • If you are using Deno, visit the deno branch (see README for usage intructions).
  • For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the umd branch (see README).

The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.

Usage

var cinvf = require( '@stdlib/math-base-special-cinvf' );

cinvf( z )

Computes the inverse of a single-precision complex floating-point number.

var Complex64 = require( '@stdlib/complex-float32-ctor' );
var realf = require( '@stdlib/complex-float32-real' );
var imagf = require( '@stdlib/complex-float32-imag' );

var v = cinvf( new Complex64( 2.0, 4.0 ) );
// returns <Complex64>

var re = realf( v );
// returns ~0.1

var im = imagf( v );
// returns ~-0.2

Examples

var Complex64Array = require( '@stdlib/array-complex64' );
var uniform = require( '@stdlib/random-array-uniform' );
var logEachMap = require( '@stdlib/console-log-each-map' );
var cinvf = require( '@stdlib/math-base-special-cinvf' );

// Create an array of random numbers:
var arr = new Complex64Array( uniform( 200, -100.0, 100.0 ) );

// Compute the inverse of each number in the array:
logEachMap( '1.0 / (%s) = %s', arr, cinvf );

C APIs

Usage

#include "stdlib/math/base/special/cinvf.h"

stdlib_base_cinvf( z )

Computes the inverse of a single-precision complex floating-point number.

#include "stdlib/complex/float32/ctor.h"
#include "stdlib/complex/float32/real.h"
#include "stdlib/complex/float32/imag.h"

stdlib_complex64_t z = stdlib_complex64( 2.0f, 4.0f );

stdlib_complex64_t out = stdlib_base_cinvf( z );

float re = stdlib_complex64_real( out );
// returns 0.1f

float im = stdlib_complex64_imag( out );
// returns -0.2f

The function accepts the following arguments:

  • z: [in] stdlib_complex64_t input value.
stdlib_complex64_t stdlib_base_cinvf( const stdlib_complex64_t z );

Examples

#include "stdlib/math/base/special/cinvf.h"
#include "stdlib/complex/float32/ctor.h"
#include "stdlib/complex/float32/reim.h"
#include <stdio.h>

int main( void ) {
    const stdlib_complex64_t x[] = {
        stdlib_complex64( 3.14f, 1.5f ),
        stdlib_complex64( -3.14f, -1.5f ),
        stdlib_complex64( 0.0f, 0.0f ),
        stdlib_complex64( 0.0f/0.0f, 0.0f/0.0f )
    };

    stdlib_complex64_t v;
    stdlib_complex64_t y;
    float re1;
    float im1;
    float re2;
    float im2;
    int i;
    for ( i = 0; i < 4; i++ ) {
        v = x[ i ];
        y = stdlib_base_cinvf( v );
        stdlib_complex64_reim( v, &re1, &im1 );
        stdlib_complex64_reim( y, &re2, &im2 );
        printf( "cinvf(%f + %fi) = %f + %fi\n", re1, im1, re2, im2 );
    }
}

References

  • Smith, Robert L. 1962. "Algorithm 116: Complex Division." Commun. ACM 5 (8). New York, NY, USA: ACM: 435. doi:10.1145/368637.368661.
  • Stewart, G. W. 1985. "A Note on Complex Division." ACM Trans. Math. Softw. 11 (3). New York, NY, USA: ACM: 238–41. doi:10.1145/214408.214414.
  • Priest, Douglas M. 2004. "Efficient Scaling for Complex Division." ACM Trans. Math. Softw. 30 (4). New York, NY, USA: ACM: 389–401. doi:10.1145/1039813.1039814.
  • Baudin, Michael, and Robert L. Smith. 2012. "A Robust Complex Division in Scilab." arXiv abs/1210.4539 [cs.MS] (October): 1–25. <https://arxiv.org/abs/1210.4539>.

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2025. The Stdlib Authors.