Skip to content

Scale a double-precision complex floating-point vector by a double-precision floating-point constant.

License

Notifications You must be signed in to change notification settings

stdlib-js/blas-base-zdscal

About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

zdscal

NPM version Build Status Coverage Status

Scale a double-precision complex floating-point vector by a double-precision floating-point constant.

Installation

npm install @stdlib/blas-base-zdscal

Alternatively,

  • To load the package in a website via a script tag without installation and bundlers, use the ES Module available on the esm branch (see README).
  • If you are using Deno, visit the deno branch (see README for usage intructions).
  • For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the umd branch (see README).

The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.

Usage

var zdscal = require( '@stdlib/blas-base-zdscal' );

zdscal( N, alpha, x, strideX )

Scales a double-precision complex floating-point vector by a double-precision floating-point constant.

var Complex128Array = require( '@stdlib/array-complex128' );

var x = new Complex128Array( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );

zdscal( 3, 2.0, x, 1 );
// x => <Complex128Array>[ 2.0, 2.0, 2.0, 2.0, 2.0, 2.0 ]

The function has the following parameters:

  • N: number of indexed elements.
  • alpha: scalar constant.
  • x: input Complex128Array.
  • strideX: stride length for x.

The N and stride parameters determine which elements in x are scaled by alpha. For example, to scale every other element in x by alpha,

var Complex128Array = require( '@stdlib/array-complex128' );

var x = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );

zdscal( 2, 2.0, x, 2 );
// x => <Complex128Array>[ 2.0, 4.0, 3.0, 4.0, 10.0, 12.0, 7.0, 8.0 ]

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Complex128Array = require( '@stdlib/array-complex128' );

// Initial array:
var x0 = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );

// Create an offset view:
var x1 = new Complex128Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

// Scale every element in `x1`:
zdscal( 3, 2.0, x1, 1 );
// x0 => <Complex128Array>[ 1.0, 2.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0 ]

zdscal.ndarray( N, alpha, x, strideX, offsetX )

Scales a double-precision complex floating-point vector by a double-precision floating-point constant using alternative indexing semantics.

var Complex128Array = require( '@stdlib/array-complex128' );

var x = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );

zdscal.ndarray( 3, 2.0, x, 1, 0 );
// x => <Complex128Array>[ 2.0, 4.0, 6.0, 8.0, 10.0, 12.0 ]

The function has the following additional parameters:

  • offsetX: starting index for x.

While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to scale every other element in the input strided array starting from the second element,

var Complex128Array = require( '@stdlib/array-complex128' );

var x = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );

zdscal.ndarray( 2, 2.0, x, 2, 1 );
// x => <Complex128Array>[ 1.0, 2.0, 6.0, 8.0, 5.0, 6.0, 14.0, 16.0 ]

Notes

  • If N <= 0, both functions return x unchanged.
  • zdscal() corresponds to the BLAS level 1 function zdscal.

Examples

var discreteUniform = require( '@stdlib/random-base-discrete-uniform' );
var filledarrayBy = require( '@stdlib/array-filled-by' );
var Complex128 = require( '@stdlib/complex-float64-ctor' );
var zdscal = require( '@stdlib/blas-base-zdscal' );

function rand() {
    return new Complex128( discreteUniform( 0, 10 ), discreteUniform( -5, 5 ) );
}

var x = filledarrayBy( 10, 'complex128', rand );
console.log( x.toString() );

zdscal( x.length, 2.0, x, 1 );
console.log( x.toString() );

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2025. The Stdlib Authors.

Releases

No releases published

Packages

No packages published