Skip to content

Latest commit

 

History

History
465 lines (311 loc) · 16.9 KB

README.md

File metadata and controls

465 lines (311 loc) · 16.9 KB
About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

cswap

NPM version Build Status Coverage Status

Interchange two complex single-precision floating-point vectors.

Usage

import cswap from 'https://cdn.jsdelivr.net/gh/stdlib-js/blas-base-wasm-cswap@esm/index.mjs';

You can also import the following named exports from the package:

import { Module } from 'https://cdn.jsdelivr.net/gh/stdlib-js/blas-base-wasm-cswap@esm/index.mjs';

cswap.main( N, x, strideX, y, strideY )

Interchanges two complex single-precision floating-point vectors.

import Complex64Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-complex64@esm/index.mjs';

var x = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

cswap.main( x.length, x, 1, y, 1 );
// x => <Complex64Array>[ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ]
// y => <Complex64Array>[ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ]

The function has the following parameters:

  • N: number of indexed elements.
  • x: first input Complex64Array.
  • strideX: index increment for x.
  • y: second input Complex64Array.
  • strideY: index increment for y.

The N and stride parameters determine how values from x are interchanged with values from y. For example, to interchange every other value in x with the first N elements of y in reverse order,

import Complex64Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-complex64@esm/index.mjs';

var x = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var y = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

cswap.main( 2, x, -2, y, 1 );
// x => <Complex64Array>[ 0.0, 0.0, 3.0, 4.0, 0.0, 0.0, 7.0, 8.0 ]
// y => <Complex64Array>[ 5.0, 6.0, 1.0, 2.0, 0.0, 0.0, 0.0, 0.0 ]

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

import Complex64Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-complex64@esm/index.mjs';

// Initial arrays...
var x0 = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var y0 = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

// Create offset views...
var x1 = new Complex64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Complex64Array( y0.buffer, y0.BYTES_PER_ELEMENT*2 ); // start at 3rd element

// Interchange every other value from `x1` into `y1` in reverse order...
cswap.main( 2, x1, -2, y1, 1 );
// x0 => <Complex64Array>[ 1.0, 2.0, 0.0, 0.0, 5.0, 6.0, 0.0, 0.0 ]
// y0 => <Complex64Array>[ 0.0, 0.0, 0.0, 0.0, 7.0, 8.0, 3.0, 4.0 ]

cswap.ndarray( N, x, strideX, offsetX, y, strideY, offsetY )

Interchanges two complex single-precision floating-point vectors using alternative indexing semantics.

import Complex64Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-complex64@esm/index.mjs';

var x = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

cswap.ndarray( x.length, x, 1, 0, y, 1, 0 );
// x => <Complex64Array>[ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ]
// y => <Complex64Array>[ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ]

The function has the following additional parameters:

  • offsetX: starting index for x.
  • offsetY: starting index for y.

While typed array views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to interchange every other value in x starting from the second value into the last N elements in y where x[i] = y[n], x[i+2] = y[n-1],...,

import Complex64Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-complex64@esm/index.mjs';

var x = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var y = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

cswap.ndarray( 2, x, 2, 1, y, -1, y.length-1 );
// x => <Complex64Array>[ 1.0, 2.0, 0.0, 0.0, 5.0, 6.0, 0.0, 0.0 ]
// y => <Complex64Array>[ 0.0, 0.0, 0.0, 0.0, 7.0, 8.0, 3.0, 4.0 ]

Module

cswap.Module( memory )

Returns a new WebAssembly module wrapper instance which uses the provided WebAssembly memory instance as its underlying memory.

import Memory from 'https://cdn.jsdelivr.net/gh/stdlib-js/wasm-memory@esm/index.mjs';

// Create a new memory instance with an initial size of 10 pages (640KiB) and a maximum size of 100 pages (6.4MiB):
var mem = new Memory({
    'initial': 10,
    'maximum': 100
});

// Create a BLAS routine:
var mod = new cswap.Module( mem );
// returns <Module>

// Initialize the routine:
mod.initializeSync();

cswap.Module.prototype.main( N, xp, sx, yp, sy )

Interchanges two complex single-precision floating-point vectors.

import Memory from 'https://cdn.jsdelivr.net/gh/stdlib-js/wasm-memory@esm/index.mjs';
import oneTo from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-one-to@esm/index.mjs';
import zeros from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-zeros@esm/index.mjs';
import bytesPerElement from 'https://cdn.jsdelivr.net/gh/stdlib-js/ndarray-base-bytes-per-element@esm/index.mjs';
import Complex64Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-complex64@esm/index.mjs';
import reinterpretComplex64 from 'https://cdn.jsdelivr.net/gh/stdlib-js/strided-base-reinterpret-complex64@esm/index.mjs';
import cswap from 'https://cdn.jsdelivr.net/gh/stdlib-js/blas-base-wasm-cswap@esm/index.mjs';

// Create a new memory instance with an initial size of 10 pages (320KiB) and a maximum size of 100 pages (6.4MiB):
var mem = new Memory({
    'initial': 10,
    'maximum': 100
});

// Create a BLAS routine:
var mod = new cswap.Module( mem );
// returns <Module>

// Initialize the routine:
mod.initializeSync();

// Define a vector data type:
var dtype = 'complex64';

// Specify a vector length:
var N = 5;

// Define pointers (i.e., byte offsets) for storing input vectors:
var xptr = 0;
var yptr = N * bytesPerElement( dtype );

// Write vector values to module memory:
var xbuf = oneTo( N*2, 'float32' );
var x = new Complex64Array( xbuf.buffer );
mod.write( xptr, x );

var ybuf = zeros( N*2, 'float32' );
var y = new Complex64Array( ybuf.buffer );
mod.write( yptr, y );

// Perform computation:
mod.main( N, xptr, 1, yptr, 1 );

// Read out the results:
var viewX = zeros( N, dtype );
var viewY = zeros( N, dtype );
mod.read( xptr, viewX );
mod.read( yptr, viewY );

console.log( reinterpretComplex64( viewX, 0 ) );
// => <Float32Array>[ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ]

console.log( reinterpretComplex64( viewY, 0 ) );
// => <Float32Array>[ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 ]

The function has the following parameters:

  • N: number of indexed elements.
  • xp: first input Complex64Array pointer (i.e., byte offset).
  • sx: index increment for x.
  • yp: second input Complex64Array pointer (i.e., byte offset).
  • sy: index increment for y.

cswap.Module.prototype.ndarray( N, xp, sx, ox, yp, sy, oy )

Interchanges two complex single-precision floating-point vectors using alternative indexing semantics.

import Memory from 'https://cdn.jsdelivr.net/gh/stdlib-js/wasm-memory@esm/index.mjs';
import oneTo from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-one-to@esm/index.mjs';
import zeros from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-zeros@esm/index.mjs';
import bytesPerElement from 'https://cdn.jsdelivr.net/gh/stdlib-js/ndarray-base-bytes-per-element@esm/index.mjs';
import Complex64Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-complex64@esm/index.mjs';
import reinterpretComplex64 from 'https://cdn.jsdelivr.net/gh/stdlib-js/strided-base-reinterpret-complex64@esm/index.mjs';
import cswap from 'https://cdn.jsdelivr.net/gh/stdlib-js/blas-base-wasm-cswap@esm/index.mjs';

// Create a new memory instance with an initial size of 10 pages (320KiB) and a maximum size of 100 pages (6.4MiB):
var mem = new Memory({
    'initial': 10,
    'maximum': 100
});

// Create a BLAS routine:
var mod = new cswap.Module( mem );
// returns <Module>

// Initialize the routine:
mod.initializeSync();

// Define a vector data type:
var dtype = 'complex64';

// Specify a vector length:
var N = 5;

// Define pointers (i.e., byte offsets) for storing input vectors:
var xptr = 0;
var yptr = N * bytesPerElement( dtype );

// Write vector values to module memory:
var xbuf = oneTo( N*2, 'float32' );
var x = new Complex64Array( xbuf.buffer );
mod.write( xptr, x );

var ybuf = zeros( N*2, 'float32' );
var y = new Complex64Array( ybuf.buffer );
mod.write( yptr, y );

// Perform computation:
mod.ndarray( N, xptr, 1, 0, yptr, 1, 0 );

// Read out the results:
var viewX = zeros( N, dtype );
var viewY = zeros( N, dtype );
mod.read( xptr, viewX );
mod.read( yptr, viewY );

console.log( reinterpretComplex64( viewX, 0 ) );
// => <Float32Array>[ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ]

console.log( reinterpretComplex64( viewY, 0 ) );
// => <Float32Array>[ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 ]

The function has the following additional parameters:

  • ox: starting index for x.
  • oy: starting index for y.

Notes

  • If N <= 0, both functions leave x and y unchanged.
  • This package implements routines using WebAssembly. When provided arrays which are not allocated on a cswap module memory instance, data must be explicitly copied to module memory prior to computation. Data movement may entail a performance cost, and, thus, if you are using arrays external to module memory, you should prefer using @stdlib/blas-base/cswap. However, if working with arrays which are allocated and explicitly managed on module memory, you can achieve better performance when compared to the pure JavaScript implementations found in @stdlib/blas/base/cswap. Beware that such performance gains may come at the cost of additional complexity when having to perform manual memory management. Choosing between implementations depends heavily on the particular needs and constraints of your application, with no one choice universally better than the other.
  • cswap() corresponds to the BLAS level 1 function cswap.

Examples

<!DOCTYPE html>
<html lang="en">
<body>
<script type="module">

import oneTo from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-one-to@esm/index.mjs';
import zeros from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-zeros@esm/index.mjs';
import Complex64Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-complex64@esm/index.mjs';
import reinterpretComplex64 from 'https://cdn.jsdelivr.net/gh/stdlib-js/strided-base-reinterpret-complex64@esm/index.mjs';
import cswap from 'https://cdn.jsdelivr.net/gh/stdlib-js/blas-base-wasm-cswap@esm/index.mjs';

// Specify a vector length:
var N = 5;

var xbuf = oneTo( N*2, 'float32' );
var x = new Complex64Array( xbuf.buffer );

var ybuf = zeros( N*2, 'float32' );
var y = new Complex64Array( ybuf.buffer );

// Perform computation:
cswap.ndarray( N, x, 1, 0, y, -1, N-1 );

// Print the results:
console.log( reinterpretComplex64( x, 0 ) );
// => <Float32Array>[ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ]

console.log( reinterpretComplex64( y, 0 ) );
// => <Float32Array>[ 9.0, 10.0, 7.0, 8.0, 5.0, 6.0, 3.0, 4.0, 1.0, 2.0 ]

</script>
</body>
</html>

Notice

This package is part of stdlib, a standard library with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


Copyright

Copyright © 2016-2025. The Stdlib Authors.