-
Notifications
You must be signed in to change notification settings - Fork 0
/
colors_hls_3d_line.py
executable file
·156 lines (119 loc) · 3.75 KB
/
colors_hls_3d_line.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#!/usr/bin/python
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
#import pylab as plt
import matplotlib.pyplot as plt
from matplotlib.colors import hsv_to_rgb
import cv2
from matplotlib.patches import Rectangle
from matplotlib.collections import PatchCollection
import matplotlib
import pi2R.lines2d
file_nr = 13090
#file_nr = 11050
file_nr = 12000
#file_nr = 14400
file_nr = 10018
path = './scans/p2/'
extension = '.png'
name1 = path + str(file_nr) + extension
name2 = path + str(file_nr+1) + extension
N = 5
def transform(disp_img, img1, img2, t=25):
res = disp_img.copy()
mask, (x,y) = pi2R.lines2d.transform(img1, img2, t)
res = pi2R.lines2d.y_data.copy()
# res[mask] = [0.,0.,0.]
color = [0,1.,1.]
color = res.max()
res[x,y] = color
# res[x+1,y] = color
# res[x-1,y] = color
# res[x,y+1] = color
# res[x,y-1] = color
return res, (x,y)
def norm2(a):
a /=a.max()
return a
# Load an color image in grayscale
img1 = cv2.imread(name1,cv2.IMREAD_UNCHANGED)
#img1 = cv2.GaussianBlur(img1,(15,5),0)
img1 = img1.astype(np.float32)/float(np.iinfo(img1.dtype).max)
img1_hls = cv2.cvtColor(img1, cv2.COLOR_BGR2HLS);
#img1_hls = img1_hls.astype(np.float32)/[180.,255.,255.]
img2 = cv2.imread(name2,cv2.IMREAD_UNCHANGED)
#img2 = cv2.GaussianBlur(img2,(15,5),0)
img2 = img2.astype(np.float32)/float(np.iinfo(img2.dtype).max)
img2_hls = cv2.cvtColor(img2, cv2.COLOR_BGR2HLS)
disp_img = img2[:,:,[2,1,0]]
disp_img2, xy = transform(disp_img, img1_hls, img2_hls)
fig = plt.figure()
ax = fig.add_subplot(1,2,1)
#imgplot = ax.imshow(disp_img2)
imgplot = ax.imshow(norm2(pi2R.lines2d.y_data))
rectangle = ax.add_patch(Rectangle((0, 0),2*N,2*N,alpha=0.2))
(y,x,z) = img2.shape
plt.axis([0., x, y, 0.])
ax3d = fig.add_subplot(1,2,2, projection='3d')
msize = 1
hls_r, = ax3d.plot([], [], 'r.', markersize=msize)
hls_b, = ax3d.plot([], [], 'b.', markersize=msize)
hls_y, = ax3d.plot([], [], 'k.', markersize=msize)
ax3d.set_xlabel('H')
ax3d.set_ylabel('L')
ax3d.set_zlabel('S')
r_x, r_y = 0, 0
r_data = []
def set_rectangle_xy(x,y, N):
global r_x, r_y, r_data
x, y = int(x), int(y)
r_x, r_y = x, y
n_hls1 = img1_hls[y-N:y+N,x-N:x+N].reshape(4*N*N,3)
n_hls2 = img2_hls[y-N:y+N,x-N:x+N].reshape(4*N*N,3)
r_data = pi2R.lines2d.y_data[y-N:y+N,x-N:x+N].reshape(4*N*N)
hls_b.set_data(n_hls1[:,0]/360., n_hls1[:,1])
hls_b.set_3d_properties(n_hls1[:,2])
hls_r.set_data(n_hls2[:,0]/360., n_hls2[:,1])
hls_r.set_3d_properties(n_hls2[:,2])
hls_y.set_data(r_data, r_data*0)
hls_y.set_3d_properties(r_data*0)
rectangle.set_width(2*N)
rectangle.set_height(2*N)
rectangle.set_xy(np.array([x-N,y-N]))
fig.canvas.draw()
def onclick(event):
if ax == event.inaxes and event.button == 1:
set_rectangle_xy(event.xdata, event.ydata, N)
print 'button=%d, x=%d, y=%d, xdata=%f, ydata=%f'%(
event.button, event.x, event.y, event.xdata, event.ydata)
r_t = 1
def onbutton(event):
global N, r_x, r_y, r_t, disp_img
dt=0.1
if event.key == 'x':
r_y+=1
if event.key == 'w':
r_y-=1
if event.key == 'a':
r_x-=1
if event.key == 'd':
r_x+=1
if event.key == 'q':
N-=1
if event.key == 'e':
N+=1
if event.key == 'r':
r_t-=dt
if event.key == 't':
r_t+=dt
disp_img2, xy = transform(disp_img, img1_hls, img2_hls, r_t)
imgplot.set_data(norm2(disp_img2))
# imgplot.set_data(norm2(pi2R.lines2d.y_data))
fig.canvas.draw()
print 'r_t:',r_t
print 'r_data:', r_data.max(), r_data.min()
set_rectangle_xy(r_x,r_y, N)
print 'key=', event.key, 'event=', event
cid = fig.canvas.mpl_connect('key_press_event', onbutton)
cid = fig.canvas.mpl_connect('button_press_event', onclick)
plt.show()