- Introduction
- Fork choice
- Constant
- Preset
- Configuration
- Helpers
- Handlers
This document is the beacon chain fork choice spec, part of Phase 0. It assumes the beacon chain state transition function spec.
The head block root associated with a store
is defined as get_head(store)
. At genesis, let store = get_forkchoice_store(genesis_state, genesis_block)
and update store
by running:
on_tick(store, time)
whenevertime > store.time
wheretime
is the current Unix timeon_block(store, block)
whenever a blockblock: SignedBeaconBlock
is receivedon_attestation(store, attestation)
whenever an attestationattestation
is receivedon_attester_slashing(store, attester_slashing)
whenever an attester slashingattester_slashing
is received
Any of the above handlers that trigger an unhandled exception (e.g. a failed assert or an out-of-range list access) are considered invalid. Invalid calls to handlers must not modify store
.
Notes:
- Leap seconds: Slots will last
SECONDS_PER_SLOT + 1
orSECONDS_PER_SLOT - 1
seconds around leap seconds. This is automatically handled by UNIX time. - Honest clocks: Honest nodes are assumed to have clocks synchronized within
SECONDS_PER_SLOT
seconds of each other. - Eth1 data: The large
ETH1_FOLLOW_DISTANCE
specified in the honest validator document should ensure thatstate.latest_eth1_data
of the canonical beacon chain remains consistent with the canonical Ethereum proof-of-work chain. If not, emergency manual intervention will be required. - Manual forks: Manual forks may arbitrarily change the fork choice rule but are expected to be enacted at epoch transitions, with the fork details reflected in
state.fork
. - Implementation: The implementation found in this specification is constructed for ease of understanding rather than for optimization in computation, space, or any other resource. A number of optimized alternatives can be found here.
Name | Value |
---|---|
INTERVALS_PER_SLOT |
uint64(3) |
Name | Value | Unit | Duration |
---|---|---|---|
SAFE_SLOTS_TO_UPDATE_JUSTIFIED |
2**3 (= 8) |
slots | 96 seconds |
Name | Value |
---|---|
PROPOSER_SCORE_BOOST |
uint64(40) |
- The proposer score boost is worth
PROPOSER_SCORE_BOOST
percentage of the committee's weight, i.e., for slot with committee weightcommittee_weight
the boost weight is equal to(committee_weight * PROPOSER_SCORE_BOOST) // 100
.
@dataclass(eq=True, frozen=True)
class LatestMessage(object):
epoch: Epoch
root: Root
@dataclass
class Store(object):
time: uint64
genesis_time: uint64
justified_checkpoint: Checkpoint
finalized_checkpoint: Checkpoint
best_justified_checkpoint: Checkpoint
proposer_boost_root: Root
equivocating_indices: Set[ValidatorIndex]
blocks: Dict[Root, BeaconBlock] = field(default_factory=dict)
block_states: Dict[Root, BeaconState] = field(default_factory=dict)
checkpoint_states: Dict[Checkpoint, BeaconState] = field(default_factory=dict)
latest_messages: Dict[ValidatorIndex, LatestMessage] = field(default_factory=dict)
The provided anchor-state will be regarded as a trusted state, to not roll back beyond. This should be the genesis state for a full client.
Note With regards to fork choice, block headers are interchangeable with blocks. The spec is likely to move to headers for reduced overhead in test vectors and better encapsulation. Full implementations store blocks as part of their database and will often use full blocks when dealing with production fork choice.
def get_forkchoice_store(anchor_state: BeaconState, anchor_block: BeaconBlock) -> Store:
assert anchor_block.state_root == hash_tree_root(anchor_state)
anchor_root = hash_tree_root(anchor_block)
anchor_epoch = get_current_epoch(anchor_state)
justified_checkpoint = Checkpoint(epoch=anchor_epoch, root=anchor_root)
finalized_checkpoint = Checkpoint(epoch=anchor_epoch, root=anchor_root)
proposer_boost_root = Root()
return Store(
time=uint64(anchor_state.genesis_time + SECONDS_PER_SLOT * anchor_state.slot),
genesis_time=anchor_state.genesis_time,
justified_checkpoint=justified_checkpoint,
finalized_checkpoint=finalized_checkpoint,
best_justified_checkpoint=justified_checkpoint,
proposer_boost_root=proposer_boost_root,
equivocating_indices=set(),
blocks={anchor_root: copy(anchor_block)},
block_states={anchor_root: copy(anchor_state)},
checkpoint_states={justified_checkpoint: copy(anchor_state)},
)
def get_slots_since_genesis(store: Store) -> int:
return (store.time - store.genesis_time) // SECONDS_PER_SLOT
def get_current_slot(store: Store) -> Slot:
return Slot(GENESIS_SLOT + get_slots_since_genesis(store))
def compute_slots_since_epoch_start(slot: Slot) -> int:
return slot - compute_start_slot_at_epoch(compute_epoch_at_slot(slot))
def get_ancestor(store: Store, root: Root, slot: Slot) -> Root:
block = store.blocks[root]
if block.slot > slot:
return get_ancestor(store, block.parent_root, slot)
elif block.slot == slot:
return root
else:
# root is older than queried slot, thus a skip slot. Return most recent root prior to slot
return root
def get_latest_attesting_balance(store: Store, root: Root) -> Gwei:
state = store.checkpoint_states[store.justified_checkpoint]
active_indices = get_active_validator_indices(state, get_current_epoch(state))
attestation_score = Gwei(sum(
state.validators[i].effective_balance for i in active_indices
if (i in store.latest_messages
and i not in store.equivocating_indices
and get_ancestor(store, store.latest_messages[i].root, store.blocks[root].slot) == root)
))
if store.proposer_boost_root == Root():
# Return only attestation score if ``proposer_boost_root`` is not set
return attestation_score
# Calculate proposer score if ``proposer_boost_root`` is set
proposer_score = Gwei(0)
# Boost is applied if ``root`` is an ancestor of ``proposer_boost_root``
if get_ancestor(store, store.proposer_boost_root, store.blocks[root].slot) == root:
num_validators = len(get_active_validator_indices(state, get_current_epoch(state)))
avg_balance = get_total_active_balance(state) // num_validators
committee_size = num_validators // SLOTS_PER_EPOCH
committee_weight = committee_size * avg_balance
proposer_score = (committee_weight * PROPOSER_SCORE_BOOST) // 100
return attestation_score + proposer_score
def filter_block_tree(store: Store, block_root: Root, blocks: Dict[Root, BeaconBlock]) -> bool:
block = store.blocks[block_root]
children = [
root for root in store.blocks.keys()
if store.blocks[root].parent_root == block_root
]
# If any children branches contain expected finalized/justified checkpoints,
# add to filtered block-tree and signal viability to parent.
if any(children):
filter_block_tree_result = [filter_block_tree(store, child, blocks) for child in children]
if any(filter_block_tree_result):
blocks[block_root] = block
return True
return False
# If leaf block, check finalized/justified checkpoints as matching latest.
head_state = store.block_states[block_root]
correct_justified = (
store.justified_checkpoint.epoch == GENESIS_EPOCH
or head_state.current_justified_checkpoint == store.justified_checkpoint
)
correct_finalized = (
store.finalized_checkpoint.epoch == GENESIS_EPOCH
or head_state.finalized_checkpoint == store.finalized_checkpoint
)
# If expected finalized/justified, add to viable block-tree and signal viability to parent.
if correct_justified and correct_finalized:
blocks[block_root] = block
return True
# Otherwise, branch not viable
return False
def get_filtered_block_tree(store: Store) -> Dict[Root, BeaconBlock]:
"""
Retrieve a filtered block tree from ``store``, only returning branches
whose leaf state's justified/finalized info agrees with that in ``store``.
"""
base = store.justified_checkpoint.root
blocks: Dict[Root, BeaconBlock] = {}
filter_block_tree(store, base, blocks)
return blocks
def get_head(store: Store) -> Root:
# Get filtered block tree that only includes viable branches
blocks = get_filtered_block_tree(store)
# Execute the LMD-GHOST fork choice
head = store.justified_checkpoint.root
while True:
children = [
root for root in blocks.keys()
if blocks[root].parent_root == head
]
if len(children) == 0:
return head
# Sort by latest attesting balance with ties broken lexicographically
# Ties broken by favoring block with lexicographically higher root
head = max(children, key=lambda root: (get_latest_attesting_balance(store, root), root))
def should_update_justified_checkpoint(store: Store, new_justified_checkpoint: Checkpoint) -> bool:
"""
To address the bouncing attack, only update conflicting justified
checkpoints in the fork choice if in the early slots of the epoch.
Otherwise, delay incorporation of new justified checkpoint until next epoch boundary.
See https://ethresear.ch/t/prevention-of-bouncing-attack-on-ffg/6114 for more detailed analysis and discussion.
"""
if compute_slots_since_epoch_start(get_current_slot(store)) < SAFE_SLOTS_TO_UPDATE_JUSTIFIED:
return True
justified_slot = compute_start_slot_at_epoch(store.justified_checkpoint.epoch)
if not get_ancestor(store, new_justified_checkpoint.root, justified_slot) == store.justified_checkpoint.root:
return False
return True
def validate_target_epoch_against_current_time(store: Store, attestation: Attestation) -> None:
target = attestation.data.target
# Attestations must be from the current or previous epoch
current_epoch = compute_epoch_at_slot(get_current_slot(store))
# Use GENESIS_EPOCH for previous when genesis to avoid underflow
previous_epoch = current_epoch - 1 if current_epoch > GENESIS_EPOCH else GENESIS_EPOCH
# If attestation target is from a future epoch, delay consideration until the epoch arrives
assert target.epoch in [current_epoch, previous_epoch]
def validate_on_attestation(store: Store, attestation: Attestation, is_from_block: bool) -> None:
target = attestation.data.target
# If the given attestation is not from a beacon block message, we have to check the target epoch scope.
if not is_from_block:
validate_target_epoch_against_current_time(store, attestation)
# Check that the epoch number and slot number are matching
assert target.epoch == compute_epoch_at_slot(attestation.data.slot)
# Attestations target be for a known block. If target block is unknown, delay consideration until the block is found
assert target.root in store.blocks
# Attestations must be for a known block. If block is unknown, delay consideration until the block is found
assert attestation.data.beacon_block_root in store.blocks
# Attestations must not be for blocks in the future. If not, the attestation should not be considered
assert store.blocks[attestation.data.beacon_block_root].slot <= attestation.data.slot
# LMD vote must be consistent with FFG vote target
target_slot = compute_start_slot_at_epoch(target.epoch)
assert target.root == get_ancestor(store, attestation.data.beacon_block_root, target_slot)
# Attestations can only affect the fork choice of subsequent slots.
# Delay consideration in the fork choice until their slot is in the past.
assert get_current_slot(store) >= attestation.data.slot + 1
def store_target_checkpoint_state(store: Store, target: Checkpoint) -> None:
# Store target checkpoint state if not yet seen
if target not in store.checkpoint_states:
base_state = copy(store.block_states[target.root])
if base_state.slot < compute_start_slot_at_epoch(target.epoch):
process_slots(base_state, compute_start_slot_at_epoch(target.epoch))
store.checkpoint_states[target] = base_state
def update_latest_messages(store: Store, attesting_indices: Sequence[ValidatorIndex], attestation: Attestation) -> None:
target = attestation.data.target
beacon_block_root = attestation.data.beacon_block_root
non_equivocating_attesting_indices = [i for i in attesting_indices if i not in store.equivocating_indices]
for i in non_equivocating_attesting_indices:
if i not in store.latest_messages or target.epoch > store.latest_messages[i].epoch:
store.latest_messages[i] = LatestMessage(epoch=target.epoch, root=beacon_block_root)
def on_tick(store: Store, time: uint64) -> None:
previous_slot = get_current_slot(store)
# update store time
store.time = time
current_slot = get_current_slot(store)
# Reset store.proposer_boost_root if this is a new slot
if current_slot > previous_slot:
store.proposer_boost_root = Root()
# Not a new epoch, return
if not (current_slot > previous_slot and compute_slots_since_epoch_start(current_slot) == 0):
return
# Update store.justified_checkpoint if a better checkpoint on the store.finalized_checkpoint chain
if store.best_justified_checkpoint.epoch > store.justified_checkpoint.epoch:
finalized_slot = compute_start_slot_at_epoch(store.finalized_checkpoint.epoch)
ancestor_at_finalized_slot = get_ancestor(store, store.best_justified_checkpoint.root, finalized_slot)
if ancestor_at_finalized_slot == store.finalized_checkpoint.root:
store.justified_checkpoint = store.best_justified_checkpoint
def on_block(store: Store, signed_block: SignedBeaconBlock) -> None:
block = signed_block.message
# Parent block must be known
assert block.parent_root in store.block_states
# Make a copy of the state to avoid mutability issues
pre_state = copy(store.block_states[block.parent_root])
# Blocks cannot be in the future. If they are, their consideration must be delayed until they are in the past.
assert get_current_slot(store) >= block.slot
# Check that block is later than the finalized epoch slot (optimization to reduce calls to get_ancestor)
finalized_slot = compute_start_slot_at_epoch(store.finalized_checkpoint.epoch)
assert block.slot > finalized_slot
# Check block is a descendant of the finalized block at the checkpoint finalized slot
assert get_ancestor(store, block.parent_root, finalized_slot) == store.finalized_checkpoint.root
# Check the block is valid and compute the post-state
state = pre_state.copy()
state_transition(state, signed_block, True)
# Add new block to the store
store.blocks[hash_tree_root(block)] = block
# Add new state for this block to the store
store.block_states[hash_tree_root(block)] = state
# Add proposer score boost if the block is timely
time_into_slot = (store.time - store.genesis_time) % SECONDS_PER_SLOT
is_before_attesting_interval = time_into_slot < SECONDS_PER_SLOT // INTERVALS_PER_SLOT
if get_current_slot(store) == block.slot and is_before_attesting_interval:
store.proposer_boost_root = hash_tree_root(block)
# Update justified checkpoint
if state.current_justified_checkpoint.epoch > store.justified_checkpoint.epoch:
if state.current_justified_checkpoint.epoch > store.best_justified_checkpoint.epoch:
store.best_justified_checkpoint = state.current_justified_checkpoint
if should_update_justified_checkpoint(store, state.current_justified_checkpoint):
store.justified_checkpoint = state.current_justified_checkpoint
# Update finalized checkpoint
if state.finalized_checkpoint.epoch > store.finalized_checkpoint.epoch:
store.finalized_checkpoint = state.finalized_checkpoint
store.justified_checkpoint = state.current_justified_checkpoint
def on_attestation(store: Store, attestation: Attestation, is_from_block: bool=False) -> None:
"""
Run ``on_attestation`` upon receiving a new ``attestation`` from either within a block or directly on the wire.
An ``attestation`` that is asserted as invalid may be valid at a later time,
consider scheduling it for later processing in such case.
"""
validate_on_attestation(store, attestation, is_from_block)
store_target_checkpoint_state(store, attestation.data.target)
# Get state at the `target` to fully validate attestation
target_state = store.checkpoint_states[attestation.data.target]
indexed_attestation = get_indexed_attestation(target_state, attestation)
assert is_valid_indexed_attestation(target_state, indexed_attestation)
# Update latest messages for attesting indices
update_latest_messages(store, indexed_attestation.attesting_indices, attestation)
Note: on_attester_slashing
should be called while syncing and a client MUST maintain the equivocation set of AttesterSlashing
s from at least the latest finalized checkpoint.
def on_attester_slashing(store: Store, attester_slashing: AttesterSlashing) -> None:
"""
Run ``on_attester_slashing`` immediately upon receiving a new ``AttesterSlashing``
from either within a block or directly on the wire.
"""
attestation_1 = attester_slashing.attestation_1
attestation_2 = attester_slashing.attestation_2
assert is_slashable_attestation_data(attestation_1.data, attestation_2.data)
state = store.block_states[store.justified_checkpoint.root]
assert is_valid_indexed_attestation(state, attestation_1)
assert is_valid_indexed_attestation(state, attestation_2)
indices = set(attestation_1.attesting_indices).intersection(attestation_2.attesting_indices)
for index in indices:
store.equivocating_indices.add(index)