-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathchamfer_distance.py
57 lines (43 loc) · 1.76 KB
/
chamfer_distance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import torch
from torch.utils.cpp_extension import load
cd = load(name="cd",
sources=["chamfer_distance/chamfer_distance.cpp",
"chamfer_distance/chamfer_distance.cu"])
class ChamferDistanceFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, xyz1, xyz2):
batchsize, n, _ = xyz1.size()
_, m, _ = xyz2.size()
xyz1 = xyz1.contiguous()
xyz2 = xyz2.contiguous()
dist1 = torch.zeros(batchsize, n)
dist2 = torch.zeros(batchsize, m)
idx1 = torch.zeros(batchsize, n, dtype=torch.int)
idx2 = torch.zeros(batchsize, m, dtype=torch.int)
if not xyz1.is_cuda:
cd.forward(xyz1, xyz2, dist1, dist2, idx1, idx2)
else:
dist1 = dist1.cuda()
dist2 = dist2.cuda()
idx1 = idx1.cuda()
idx2 = idx2.cuda()
cd.forward_cuda(xyz1, xyz2, dist1, dist2, idx1, idx2)
ctx.save_for_backward(xyz1, xyz2, idx1, idx2)
return dist1, dist2
@staticmethod
def backward(ctx, graddist1, graddist2):
xyz1, xyz2, idx1, idx2 = ctx.saved_tensors
graddist1 = graddist1.contiguous()
graddist2 = graddist2.contiguous()
gradxyz1 = torch.zeros(xyz1.size())
gradxyz2 = torch.zeros(xyz2.size())
if not graddist1.is_cuda:
cd.backward(xyz1, xyz2, gradxyz1, gradxyz2, graddist1, graddist2, idx1, idx2)
else:
gradxyz1 = gradxyz1.cuda()
gradxyz2 = gradxyz2.cuda()
cd.backward_cuda(xyz1, xyz2, gradxyz1, gradxyz2, graddist1, graddist2, idx1, idx2)
return gradxyz1, gradxyz2
class ChamferDistance(torch.nn.Module):
def forward(self, xyz1, xyz2):
return ChamferDistanceFunction.apply(xyz1, xyz2)