Skip to content

Commit 160ce1c

Browse files
committed
added tips and tricks section
1 parent 8ab2432 commit 160ce1c

File tree

3 files changed

+93
-22
lines changed

3 files changed

+93
-22
lines changed

.gitignore

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,5 @@
11
.ipynb_checkpoints/
2+
ipynb/ipynb_checkpoints/
23

34
# Byte-compiled / optimized / DLL files
45
__pycache__/

README.md

Lines changed: 18 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,8 @@ This project is not connected to the gallery on [http://matplotlib.org/gallery.h
2121
- [Preparing Plots for Publication](#preparing-plots-for-publication)
2222
- [Scatter plots](#scatter-plots)
2323
- [Special plots](#special-plots)
24-
- [Clustering - Heatmaps and Dendrograms](#Clustering---Heatmaps-and-Dendrograms)
24+
- [Clustering - Heatmaps and Dendrograms](#clustering---heatmaps-and-dendrograms)
25+
- [Tips and Tricks](#tips-and-tricks)
2526

2627
<br>
2728
<br>
@@ -292,3 +293,19 @@ Or even better: It would be great if you would simply fork this project and send
292293
<br>
293294
<br>
294295
<br>
296+
297+
298+
299+
## [Tips and Tricks](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/clustering/hierarchical/tricks.ipynb)
300+
301+
[[back to top](https://github.com/rasbt/matplotlib-gallery#matplotlib-gallery)]
302+
303+
<br>
304+
<br>
305+
306+
307+
308+
<br>
309+
<br>
310+
<br>
311+
<br>

ipynb/tricks.ipynb

Lines changed: 74 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -31,13 +31,13 @@
3131
"name": "stdout",
3232
"output_type": "stream",
3333
"text": [
34-
"Last updated: 26/08/2014 \n",
34+
"Last updated: 07/30/2015 \n",
3535
"\n",
36-
"CPython 3.4.1\n",
37-
"IPython 2.1.0\n",
36+
"CPython 3.4.3\n",
37+
"IPython 3.2.0\n",
3838
"\n",
39-
"matplotlib 1.4.0\n",
40-
"numpy 1.8.2\n"
39+
"matplotlib 1.4.3\n",
40+
"numpy 1.9.2\n"
4141
]
4242
}
4343
],
@@ -89,17 +89,7 @@
8989
"cell_type": "markdown",
9090
"metadata": {},
9191
"source": [
92-
"- [Simple Boxplot](#Simple-Boxplot)\n",
93-
"\n",
94-
"- [Black and white Boxplot](#Black-and-white-Boxplot)\n",
95-
"\n",
96-
"- [Horizontal Boxplot](#Horizontal-Boxplot)\n",
97-
"\n",
98-
"- [Filled and cylindrical boxplots](#Filled-and-cylindrical-boxplots)\n",
99-
"\n",
100-
"- [Boxplots with custom fill colors](#Boxplots-with-custom-fill-colors)\n",
101-
"\n",
102-
"- [Violin plots](#Violin-plots)"
92+
"- [When to use the figure object](#When-to-use-the-figure-object)"
10393
]
10494
},
10595
{
@@ -126,24 +116,87 @@
126116
"<br>"
127117
]
128118
},
119+
{
120+
"cell_type": "markdown",
121+
"metadata": {},
122+
"source": [
123+
"# When to use the figure object"
124+
]
125+
},
126+
{
127+
"cell_type": "markdown",
128+
"metadata": {
129+
"collapsed": false
130+
},
131+
"source": [
132+
"[[back to top](#Sections)]"
133+
]
134+
},
135+
{
136+
"cell_type": "markdown",
137+
"metadata": {},
138+
"source": [
139+
"Often, we see code that explicitely instantiates a new `figure` object:"
140+
]
141+
},
129142
{
130143
"cell_type": "code",
131-
"execution_count": null,
144+
"execution_count": 5,
132145
"metadata": {
133-
"collapsed": true
146+
"collapsed": false
134147
},
135-
"outputs": [],
148+
"outputs": [
149+
{
150+
"data": {
151+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEP9JREFUeJzt3W+oXGedwPHvb9MqCHbrEiiYRupqcFVoUUnaXXe3Iy30\nWsGCC1ui3lIVLAuRfVGw1hfmvolLIS9c6XK3KbXIvjALKmxcSousDkqp1dak1TUpyXYLSSpl6z9E\nCknob1/MmJxO7505M/fMzPnz/cCFe+48PfP04d4n3z6TuY3MRJLULn+y7AlIkqrn5i5JLeTmLkkt\n5OYuSS3k5i5JLeTmLkktNHFzj4ivRcRLEfGzMWO+GhEnI+KZiHhftVOUJE2rTLk/DKxs9mBE3Aq8\nMzN3AZ8F1iuamyRpRhM398z8IfCbMUM+Cnx9OPZJ4MqIuKqa6UmSZlHFmfsO4HTh+gxwdQX3lSTN\nqKoXVGPk2t9pIElLdFkF9zgL7CxcXz382mtEhBu+JM0gM0cDeqIqyv0IcAdARNwA/DYzX9poYGb6\nkcn+/fuXPoe6fLgWroVrcenjpz9Nrr02+chHkrNnB1+b1cRyj4hvADcC2yPiNLAfuHy4WT+QmY9E\nxK0RcQr4A/CpmWcjSR107hwcOADr63DwIKyuQkzd6q81cXPPzL0lxuzb2jQkqZuOHoU774SdO+HY\nMXjrW6u5r+9QXYJer7fsKdSGa3GJa3FJF9bi3DnYvx9uuQXuvhu+853qNnaA2MqZzlRPFJGLei5J\nqrNirR86NH5TjwhySS+oSpJKmHetF1XxVyElSRPM62x9M5a7JM3RImu9yHKXpDlZdK0XWe6SVLFl\n1XqR5S5JFVpmrRdZ7pJUgTrUepHlLklbVJdaL7LcJWlGdav1IstdkmZQx1ovstwlaQp1rvUiy12S\nSqp7rRdZ7pI0QVNqvchyl6QxmlTrRZa7JG2gibVeZLlL0oim1nqR5S5JQ02v9SLLXZJoR60XWe6S\nOq1NtV5kuUvqrLbVepHlLqlz2lrrRZa7pE5pc60XWe6SOqELtV5kuUtqva7UepHlLqm1ulbrRZa7\npFbqYq0XWe6SWqXLtV5kuUtqja7XepHlLqnxrPXXs9wlNZq1vjHLXVIjWevjWe6SGsdan8xyl9QY\n1np5lrukRrDWpzOx3CNiJSJORMTJiLhng8e3R8SjEXEsIn4eEXfOZaaSOslan01k5uYPRmwDngNu\nBs4CPwH2Zubxwpg14I2ZeW9EbB+OvyozL4zcK8c9lySNKtb6oUPd3NQjgsyMaf+5SeW+BziVmS9k\n5nngMHDbyJhfAlcMP78C+NXoxi5J07DWt27SmfsO4HTh+gxw/ciYB4HvRcSLwJuBv69uepK6xrP1\nakza3Muco3wROJaZvYh4B/DdiLguM38/OnBtbe3i571ej16vN8VUJbXZuXNw4ACsr8PBg7C6CjH1\nYUTz9ft9+v3+lu8z6cz9BmAtM1eG1/cCr2bmfYUxjwAHMvPx4fV/Afdk5lMj9/LMXdKGPFvf3LzO\n3J8CdkXENRHxBuB24MjImBMMXnAlIq4C3gU8P+1EJHWPZ+vzM/ZYJjMvRMQ+4DFgG/BQZh6PiLuG\njz8AfBl4OCKeYfCHxecz89dznrekhvNsfb7GHstU+kQey0jCs/VpzXos4ztUJS2Mtb44/m4ZSXPn\n2friWe6S5spaXw7LXdJcWOvLZblLqpy1vnyWu6TKWOv1YblLqoS1Xi+Wu6QtsdbryXKXNDNrvb4s\nd0lTs9brz3KXNBVrvRksd0mlWOvNYrlLmshabx7LXdKmrPXmstwlbchabzbLXdJrWOvtYLlLusha\nbw/LXZK13kKWu9Rx1no7We5SR1nr7Wa5Sx1krbef5S51iLXeHZa71BHWerdY7lLLWevdZLlLLWat\nd5flLrWQtS7LXWoZa11guUutYa2ryHKXWsBa1yjLXWowa12bsdylhrLWNY7lLjWMta4yLHepQax1\nlWW5Sw1grWtalrtUc9a6ZjGx3CNiJSJORMTJiLhnkzG9iDgaET+PiH7ls5Q6yFrXVowt94jYBtwP\n3AycBX4SEUcy83hhzJXAvwC3ZOaZiNg+zwlLXWCta6smlfse4FRmvpCZ54HDwG0jYz4OfCszzwBk\n5svVT1PqBmtdVZl05r4DOF24PgNcPzJmF3B5RHwfeDPwz5n5b9VNUeoGa11VmrS5Z4l7XA68H7gJ\neBPwRET8KDNPbnVyUhecOwcHDsD6Ohw8CKurELHsWanpJm3uZ4GdheudDOq96DTwcma+ArwSET8A\nrgNet7mvra1d/LzX69Hr9aafsdQi1rpG9ft9+v3+lu8TmZvHeURcBjzHoMpfBH4M7B15QfUvGLzo\negvwRuBJ4PbM/MXIvXLcc0ldYq2rrIggM6f+7hhb7pl5ISL2AY8B24CHMvN4RNw1fPyBzDwREY8C\nzwKvAg+ObuySLrHWtQhjy73SJ7Lc1XHWumYxl3KXVA1rXYvm75aR5si/t65lsdylObHWtUyWu1Qx\na111YLlLFbLWVReWu1QBa111Y7lLW2Stq44sd2lG1rrqzHKXZmCtq+4sd2kK1rqawnKXSrLW1SSW\nuzSBta4mstylMax1NZXlLm3AWlfTWe7SCGtdbWC5S0PWutrEcpew1tU+lrs6zVpXW1nu6ixrXW1m\nuatzrHV1geWuTrHW1RWWuzrBWlfXWO5qPWtdXWS5q7WsdXWZ5a5WstbVdZa7WsValwYsd7WGtS5d\nYrmr8ax16fUsdzWatS5tzHJXI1nr0niWuxrHWpcms9zVGNa6VJ7lrkaw1qXpWO6qNWtdmo3lrtqy\n1qXZWe6qHWtd2rqJm3tErETEiYg4GRH3jBm3OyIuRMTHqp2iuuToUdi9G55+elDrd9wBEcueldQ8\nYzf3iNgG3A+sAO8B9kbEuzcZdx/wKOCPoqZmrUvVmnTmvgc4lZkvAETEYeA24PjIuM8B3wR2Vz1B\ntZ9n61L1Jh3L7ABOF67PDL92UUTsYLDhrw+/lJXNTq1mrUvzM6ncy2zUXwG+kJkZEYHHMirBWpfm\na9LmfhbYWbjeyaDeiz4AHB7s62wHPhwR5zPzyOjN1tbWLn7e6/Xo9XrTz1iNdu4cHDgA6+tw8CCs\nrvqCqVTU7/fp9/tbvk9kbh7nEXEZ8BxwE/Ai8GNgb2aOnrn/cfzDwHcy89sbPJbjnkvtV6z1Q4es\ndamMiCAzp06gsWfumXkB2Ac8BvwC+PfMPB4Rd0XEXbNNVV3j2bq0eGPLvdInstw7yVqXtmYu5S7N\nylqXlsvfLaPK+TdhpOWz3FUZa12qD8tdlbDWpXqx3LUl1rpUT5a7ZmatS/VluWtq1rpUf5a7pmKt\nS81guasUa11qFstdE1nrUvNY7tqUtS41l+WuDVnrUrNZ7noNa11qB8tdF1nrUntY7rLWpRay3DvO\nWpfayXLvKGtdajfLvYOsdan9LPcOsdal7rDcO8Jal7rFcm85a13qJsu9xax1qbss9xay1iVZ7i1j\nrUsCy701rHVJRZZ7C1jrkkZZ7g1mrUvajOXeUNa6pHEs94ax1iWVYbk3iLUuqSzLvQGsdUnTstxr\nzlqXNAvLvaasdUlbYbnXkLUuaass9xqx1iVVxXKvCWtdUpVKlXtErETEiYg4GRH3bPD4JyLimYh4\nNiIej4hrq59qO1nrkuZhYrlHxDbgfuBm4Czwk4g4kpnHC8OeB/42M38XESvAIeCGeUy4Tax1SfNS\nptz3AKcy84XMPA8cBm4rDsjMJzLzd8PLJ4Grq51mu1jrkuatzJn7DuB04foMcP2Y8Z8BHtnKpNrM\nWpe0CGU29yx7s4j4EPBp4IMbPb62tnbx816vR6/XK3vrxjt3Dg4cgPV1OHgQVlchYtmzklQ3/X6f\nfr+/5ftE5vi9OyJuANYyc2V4fS/wambeNzLuWuDbwEpmntrgPjnpudqqWOuHDlnrksqLCDJz6hQs\nc+b+FLArIq6JiDcAtwNHRp78bQw29k9utLF3lWfrkpZl4rFMZl6IiH3AY8A24KHMPB4Rdw0ffwD4\nEvAWYD0GZw3nM3PP/KZdf56tS1qmiccylT1RR45lPFuXVKVZj2V8h2qFrHVJdeHvlqmAZ+uS6sZy\n3yJrXVIdWe4zstYl1ZnlPgNrXVLdWe5TsNYlNYXlXpK1LqlJLPcJrHVJTWS5j2GtS2oqy30D1rqk\nprPcR1jrktrAch+y1iW1ieWOtS6pfTpd7ta6pLbqbLlb65LarHPlbq1L6oJOlbu1LqkrOlHu1rqk\nrml9uVvrkrqoteVurUvqslaWu7UuqetaVe7WuiQNtKbcrXVJuqTx5W6tS9LrNbrcrXVJ2lgjy91a\nl6TxGlfu1rokTdaYcrfWJam8RpS7tS5J06l1uVvrkjSb2pa7tS5Js6tduVvrkrR1tSp3a12SqlGL\ncrfWJalaSy93a12Sqjex3CNiJSJORMTJiLhnkzFfHT7+TES8r8wTW+uSND9jN/eI2AbcD6wA7wH2\nRsS7R8bcCrwzM3cBnwXWJz3p0aOwezc8/fSg1u+4AyJm/ndonH6/v+wp1IZrcYlrcYlrsXWTyn0P\ncCozX8jM88Bh4LaRMR8Fvg6QmU8CV0bEVRvdzFof8Bv3EtfiEtfiEtdi6yadue8ATheuzwDXlxhz\nNfDS6M127/ZsXZIWYdLmniXvM3qosuE/d/fdsLrarSMYSVqGyNx8/46IG4C1zFwZXt8LvJqZ9xXG\n/CvQz8zDw+sTwI2Z+dLIvcr+QSFJKsjMqZN4Urk/BeyKiGuAF4Hbgb0jY44A+4DDwz8Mfju6sc86\nOUnSbMZu7pl5ISL2AY8B24CHMvN4RNw1fPyBzHwkIm6NiFPAH4BPzX3WkqSxxh7LSJKaqfJfPzCv\nNz010aS1iIhPDNfg2Yh4PCKuXcY8F6HM98Vw3O6IuBARH1vk/Bal5M9HLyKORsTPI6K/4CkuTImf\nj+0R8WhEHBuuxZ1LmOZCRMTXIuKliPjZmDHT7ZuZWdkHg6ObU8A1wOXAMeDdI2NuBR4Zfn498KMq\n51CXj5Jr8ZfAnw4/X+nyWhTGfQ/4T+Dvlj3vJX1PXAn8N3D18Hr7sue9xLVYA/7pj+sA/Aq4bNlz\nn9N6/A3wPuBnmzw+9b5ZdblX+qanhpu4Fpn5RGb+bnj5JIP3B7RRme8LgM8B3wT+b5GTW6Ay6/Bx\n4FuZeQYgM19e8BwXpcxa/BK4Yvj5FcCvMvPCAue4MJn5Q+A3Y4ZMvW9Wvblv9IamHSXGtHFTK7MW\nRZ8BHpnrjJZn4lpExA4GP9x//PUVbXwxqMz3xC7gzyLi+xHxVESsLmx2i1VmLR4E3hsRLwLPAP+4\noLnV0dT7ZtW/FbLSNz01XOl/p4j4EPBp4IPzm85SlVmLrwBfyMyMiOD13yNtUGYdLgfeD9wEvAl4\nIiJ+lJkn5zqzxSuzFl8EjmVmLyLeAXw3Iq7LzN/PeW51NdW+WfXmfhbYWbjeyeBPmHFjrh5+rW3K\nrAXDF1EfBFYyc9x/ljVZmbX4AIP3SsDgfPXDEXE+M48sZooLUWYdTgMvZ+YrwCsR8QPgOqBtm3uZ\ntfgr4ABAZv5PRPwv8C4G77/pmqn3zaqPZS6+6Ski3sDgTU+jP5xHgDvg4jtgN3zTUwtMXIuIeBvw\nbeCTmXlqCXNclIlrkZl/nplvz8y3Mzh3/4eWbexQ7ufjP4C/johtEfEmBi+e/WLB81yEMmtxArgZ\nYHi+/C7g+YXOsj6m3jcrLff0TU8XlVkL4EvAW4D1YbGez8w9y5rzvJRci9Yr+fNxIiIeBZ4FXgUe\nzMzWbe4lvye+DDwcEc8wCNHPZ+avlzbpOYqIbwA3Atsj4jSwn8ER3cz7pm9ikqQWqsX/Q1WSVC03\nd0lqITd3SWohN3dJaiE3d0lqITd3SWohN3dJaiE3d0lqof8H/OANfF35uk4AAAAASUVORK5CYII=\n",
152+
"text/plain": [
153+
"<matplotlib.figure.Figure at 0x1065dba58>"
154+
]
155+
},
156+
"metadata": {},
157+
"output_type": "display_data"
158+
}
159+
],
136160
"source": [
137-
"# When to "
161+
"import matplotlib.pyplot as plt\n",
162+
"\n",
163+
"fig = plt.figure()\n",
164+
"\n",
165+
"plt.plot([0, 1], [0, 1])\n",
166+
"plt.show()"
138167
]
139168
},
140169
{
141170
"cell_type": "markdown",
171+
"metadata": {},
172+
"source": [
173+
"If we are not planning to manipulate the figure object or add subplots to the figure, this may be redundant. Why? \n",
174+
"As nicely explained on [SO](http://stackoverflow.com/questions/31729220/when-is-matplotlibs-pyplot-figure-redundant/31730499#31730499), the `plot` function retrieves the current figure automatically via `gcf` (\"get current figure\") nested inside a `gca` (\"get current axes\") call. Thus, it really doesn't matter if we create a figure prior to `plot` unless we are planning to modify it in some way."
175+
]
176+
},
177+
{
178+
"cell_type": "code",
179+
"execution_count": 6,
142180
"metadata": {
143181
"collapsed": false
144182
},
183+
"outputs": [
184+
{
185+
"data": {
186+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEP9JREFUeJzt3W+oXGedwPHvb9MqCHbrEiiYRupqcFVoUUnaXXe3Iy30\nWsGCC1ui3lIVLAuRfVGw1hfmvolLIS9c6XK3KbXIvjALKmxcSousDkqp1dak1TUpyXYLSSpl6z9E\nCknob1/MmJxO7505M/fMzPnz/cCFe+48PfP04d4n3z6TuY3MRJLULn+y7AlIkqrn5i5JLeTmLkkt\n5OYuSS3k5i5JLeTmLkktNHFzj4ivRcRLEfGzMWO+GhEnI+KZiHhftVOUJE2rTLk/DKxs9mBE3Aq8\nMzN3AZ8F1iuamyRpRhM398z8IfCbMUM+Cnx9OPZJ4MqIuKqa6UmSZlHFmfsO4HTh+gxwdQX3lSTN\nqKoXVGPk2t9pIElLdFkF9zgL7CxcXz382mtEhBu+JM0gM0cDeqIqyv0IcAdARNwA/DYzX9poYGb6\nkcn+/fuXPoe6fLgWroVrcenjpz9Nrr02+chHkrNnB1+b1cRyj4hvADcC2yPiNLAfuHy4WT+QmY9E\nxK0RcQr4A/CpmWcjSR107hwcOADr63DwIKyuQkzd6q81cXPPzL0lxuzb2jQkqZuOHoU774SdO+HY\nMXjrW6u5r+9QXYJer7fsKdSGa3GJa3FJF9bi3DnYvx9uuQXuvhu+853qNnaA2MqZzlRPFJGLei5J\nqrNirR86NH5TjwhySS+oSpJKmHetF1XxVyElSRPM62x9M5a7JM3RImu9yHKXpDlZdK0XWe6SVLFl\n1XqR5S5JFVpmrRdZ7pJUgTrUepHlLklbVJdaL7LcJWlGdav1IstdkmZQx1ovstwlaQp1rvUiy12S\nSqp7rRdZ7pI0QVNqvchyl6QxmlTrRZa7JG2gibVeZLlL0oim1nqR5S5JQ02v9SLLXZJoR60XWe6S\nOq1NtV5kuUvqrLbVepHlLqlz2lrrRZa7pE5pc60XWe6SOqELtV5kuUtqva7UepHlLqm1ulbrRZa7\npFbqYq0XWe6SWqXLtV5kuUtqja7XepHlLqnxrPXXs9wlNZq1vjHLXVIjWevjWe6SGsdan8xyl9QY\n1np5lrukRrDWpzOx3CNiJSJORMTJiLhng8e3R8SjEXEsIn4eEXfOZaaSOslan01k5uYPRmwDngNu\nBs4CPwH2Zubxwpg14I2ZeW9EbB+OvyozL4zcK8c9lySNKtb6oUPd3NQjgsyMaf+5SeW+BziVmS9k\n5nngMHDbyJhfAlcMP78C+NXoxi5J07DWt27SmfsO4HTh+gxw/ciYB4HvRcSLwJuBv69uepK6xrP1\nakza3Muco3wROJaZvYh4B/DdiLguM38/OnBtbe3i571ej16vN8VUJbXZuXNw4ACsr8PBg7C6CjH1\nYUTz9ft9+v3+lu8z6cz9BmAtM1eG1/cCr2bmfYUxjwAHMvPx4fV/Afdk5lMj9/LMXdKGPFvf3LzO\n3J8CdkXENRHxBuB24MjImBMMXnAlIq4C3gU8P+1EJHWPZ+vzM/ZYJjMvRMQ+4DFgG/BQZh6PiLuG\njz8AfBl4OCKeYfCHxecz89dznrekhvNsfb7GHstU+kQey0jCs/VpzXos4ztUJS2Mtb44/m4ZSXPn\n2friWe6S5spaXw7LXdJcWOvLZblLqpy1vnyWu6TKWOv1YblLqoS1Xi+Wu6QtsdbryXKXNDNrvb4s\nd0lTs9brz3KXNBVrvRksd0mlWOvNYrlLmshabx7LXdKmrPXmstwlbchabzbLXdJrWOvtYLlLusha\nbw/LXZK13kKWu9Rx1no7We5SR1nr7Wa5Sx1krbef5S51iLXeHZa71BHWerdY7lLLWevdZLlLLWat\nd5flLrWQtS7LXWoZa11guUutYa2ryHKXWsBa1yjLXWowa12bsdylhrLWNY7lLjWMta4yLHepQax1\nlWW5Sw1grWtalrtUc9a6ZjGx3CNiJSJORMTJiLhnkzG9iDgaET+PiH7ls5Q6yFrXVowt94jYBtwP\n3AycBX4SEUcy83hhzJXAvwC3ZOaZiNg+zwlLXWCta6smlfse4FRmvpCZ54HDwG0jYz4OfCszzwBk\n5svVT1PqBmtdVZl05r4DOF24PgNcPzJmF3B5RHwfeDPwz5n5b9VNUeoGa11VmrS5Z4l7XA68H7gJ\neBPwRET8KDNPbnVyUhecOwcHDsD6Ohw8CKurELHsWanpJm3uZ4GdheudDOq96DTwcma+ArwSET8A\nrgNet7mvra1d/LzX69Hr9aafsdQi1rpG9ft9+v3+lu8TmZvHeURcBjzHoMpfBH4M7B15QfUvGLzo\negvwRuBJ4PbM/MXIvXLcc0ldYq2rrIggM6f+7hhb7pl5ISL2AY8B24CHMvN4RNw1fPyBzDwREY8C\nzwKvAg+ObuySLrHWtQhjy73SJ7Lc1XHWumYxl3KXVA1rXYvm75aR5si/t65lsdylObHWtUyWu1Qx\na111YLlLFbLWVReWu1QBa111Y7lLW2Stq44sd2lG1rrqzHKXZmCtq+4sd2kK1rqawnKXSrLW1SSW\nuzSBta4mstylMax1NZXlLm3AWlfTWe7SCGtdbWC5S0PWutrEcpew1tU+lrs6zVpXW1nu6ixrXW1m\nuatzrHV1geWuTrHW1RWWuzrBWlfXWO5qPWtdXWS5q7WsdXWZ5a5WstbVdZa7WsValwYsd7WGtS5d\nYrmr8ax16fUsdzWatS5tzHJXI1nr0niWuxrHWpcms9zVGNa6VJ7lrkaw1qXpWO6qNWtdmo3lrtqy\n1qXZWe6qHWtd2rqJm3tErETEiYg4GRH3jBm3OyIuRMTHqp2iuuToUdi9G55+elDrd9wBEcueldQ8\nYzf3iNgG3A+sAO8B9kbEuzcZdx/wKOCPoqZmrUvVmnTmvgc4lZkvAETEYeA24PjIuM8B3wR2Vz1B\ntZ9n61L1Jh3L7ABOF67PDL92UUTsYLDhrw+/lJXNTq1mrUvzM6ncy2zUXwG+kJkZEYHHMirBWpfm\na9LmfhbYWbjeyaDeiz4AHB7s62wHPhwR5zPzyOjN1tbWLn7e6/Xo9XrTz1iNdu4cHDgA6+tw8CCs\nrvqCqVTU7/fp9/tbvk9kbh7nEXEZ8BxwE/Ai8GNgb2aOnrn/cfzDwHcy89sbPJbjnkvtV6z1Q4es\ndamMiCAzp06gsWfumXkB2Ac8BvwC+PfMPB4Rd0XEXbNNVV3j2bq0eGPLvdInstw7yVqXtmYu5S7N\nylqXlsvfLaPK+TdhpOWz3FUZa12qD8tdlbDWpXqx3LUl1rpUT5a7ZmatS/VluWtq1rpUf5a7pmKt\nS81guasUa11qFstdE1nrUvNY7tqUtS41l+WuDVnrUrNZ7noNa11qB8tdF1nrUntY7rLWpRay3DvO\nWpfayXLvKGtdajfLvYOsdan9LPcOsdal7rDcO8Jal7rFcm85a13qJsu9xax1qbss9xay1iVZ7i1j\nrUsCy701rHVJRZZ7C1jrkkZZ7g1mrUvajOXeUNa6pHEs94ax1iWVYbk3iLUuqSzLvQGsdUnTstxr\nzlqXNAvLvaasdUlbYbnXkLUuaass9xqx1iVVxXKvCWtdUpVKlXtErETEiYg4GRH3bPD4JyLimYh4\nNiIej4hrq59qO1nrkuZhYrlHxDbgfuBm4Czwk4g4kpnHC8OeB/42M38XESvAIeCGeUy4Tax1SfNS\nptz3AKcy84XMPA8cBm4rDsjMJzLzd8PLJ4Grq51mu1jrkuatzJn7DuB04foMcP2Y8Z8BHtnKpNrM\nWpe0CGU29yx7s4j4EPBp4IMbPb62tnbx816vR6/XK3vrxjt3Dg4cgPV1OHgQVlchYtmzklQ3/X6f\nfr+/5ftE5vi9OyJuANYyc2V4fS/wambeNzLuWuDbwEpmntrgPjnpudqqWOuHDlnrksqLCDJz6hQs\nc+b+FLArIq6JiDcAtwNHRp78bQw29k9utLF3lWfrkpZl4rFMZl6IiH3AY8A24KHMPB4Rdw0ffwD4\nEvAWYD0GZw3nM3PP/KZdf56tS1qmiccylT1RR45lPFuXVKVZj2V8h2qFrHVJdeHvlqmAZ+uS6sZy\n3yJrXVIdWe4zstYl1ZnlPgNrXVLdWe5TsNYlNYXlXpK1LqlJLPcJrHVJTWS5j2GtS2oqy30D1rqk\nprPcR1jrktrAch+y1iW1ieWOtS6pfTpd7ta6pLbqbLlb65LarHPlbq1L6oJOlbu1LqkrOlHu1rqk\nrml9uVvrkrqoteVurUvqslaWu7UuqetaVe7WuiQNtKbcrXVJuqTx5W6tS9LrNbrcrXVJ2lgjy91a\nl6TxGlfu1rokTdaYcrfWJam8RpS7tS5J06l1uVvrkjSb2pa7tS5Js6tduVvrkrR1tSp3a12SqlGL\ncrfWJalaSy93a12Sqjex3CNiJSJORMTJiLhnkzFfHT7+TES8r8wTW+uSND9jN/eI2AbcD6wA7wH2\nRsS7R8bcCrwzM3cBnwXWJz3p0aOwezc8/fSg1u+4AyJm/ndonH6/v+wp1IZrcYlrcYlrsXWTyn0P\ncCozX8jM88Bh4LaRMR8Fvg6QmU8CV0bEVRvdzFof8Bv3EtfiEtfiEtdi6yadue8ATheuzwDXlxhz\nNfDS6M127/ZsXZIWYdLmniXvM3qosuE/d/fdsLrarSMYSVqGyNx8/46IG4C1zFwZXt8LvJqZ9xXG\n/CvQz8zDw+sTwI2Z+dLIvcr+QSFJKsjMqZN4Urk/BeyKiGuAF4Hbgb0jY44A+4DDwz8Mfju6sc86\nOUnSbMZu7pl5ISL2AY8B24CHMvN4RNw1fPyBzHwkIm6NiFPAH4BPzX3WkqSxxh7LSJKaqfJfPzCv\nNz010aS1iIhPDNfg2Yh4PCKuXcY8F6HM98Vw3O6IuBARH1vk/Bal5M9HLyKORsTPI6K/4CkuTImf\nj+0R8WhEHBuuxZ1LmOZCRMTXIuKliPjZmDHT7ZuZWdkHg6ObU8A1wOXAMeDdI2NuBR4Zfn498KMq\n51CXj5Jr8ZfAnw4/X+nyWhTGfQ/4T+Dvlj3vJX1PXAn8N3D18Hr7sue9xLVYA/7pj+sA/Aq4bNlz\nn9N6/A3wPuBnmzw+9b5ZdblX+qanhpu4Fpn5RGb+bnj5JIP3B7RRme8LgM8B3wT+b5GTW6Ay6/Bx\n4FuZeQYgM19e8BwXpcxa/BK4Yvj5FcCvMvPCAue4MJn5Q+A3Y4ZMvW9Wvblv9IamHSXGtHFTK7MW\nRZ8BHpnrjJZn4lpExA4GP9x//PUVbXwxqMz3xC7gzyLi+xHxVESsLmx2i1VmLR4E3hsRLwLPAP+4\noLnV0dT7ZtW/FbLSNz01XOl/p4j4EPBp4IPzm85SlVmLrwBfyMyMiOD13yNtUGYdLgfeD9wEvAl4\nIiJ+lJkn5zqzxSuzFl8EjmVmLyLeAXw3Iq7LzN/PeW51NdW+WfXmfhbYWbjeyeBPmHFjrh5+rW3K\nrAXDF1EfBFYyc9x/ljVZmbX4AIP3SsDgfPXDEXE+M48sZooLUWYdTgMvZ+YrwCsR8QPgOqBtm3uZ\ntfgr4ABAZv5PRPwv8C4G77/pmqn3zaqPZS6+6Ski3sDgTU+jP5xHgDvg4jtgN3zTUwtMXIuIeBvw\nbeCTmXlqCXNclIlrkZl/nplvz8y3Mzh3/4eWbexQ7ufjP4C/johtEfEmBi+e/WLB81yEMmtxArgZ\nYHi+/C7g+YXOsj6m3jcrLff0TU8XlVkL4EvAW4D1YbGez8w9y5rzvJRci9Yr+fNxIiIeBZ4FXgUe\nzMzWbe4lvye+DDwcEc8wCNHPZ+avlzbpOYqIbwA3Atsj4jSwn8ER3cz7pm9ikqQWqsX/Q1WSVC03\nd0lqITd3SWohN3dJaiE3d0lqITd3SWohN3dJaiE3d0lqof8H/OANfF35uk4AAAAASUVORK5CYII=\n",
187+
"text/plain": [
188+
"<matplotlib.figure.Figure at 0x104f52940>"
189+
]
190+
},
191+
"metadata": {},
192+
"output_type": "display_data"
193+
}
194+
],
145195
"source": [
146-
"[[back to top](#Sections)]"
196+
"import matplotlib.pyplot as plt\n",
197+
"\n",
198+
"plt.plot([0, 1], [0, 1])\n",
199+
"plt.show()"
147200
]
148201
},
149202
{

0 commit comments

Comments
 (0)