|
31 | 31 | "name": "stdout",
|
32 | 32 | "output_type": "stream",
|
33 | 33 | "text": [
|
34 |
| - "Last updated: 26/08/2014 \n", |
| 34 | + "Last updated: 07/30/2015 \n", |
35 | 35 | "\n",
|
36 |
| - "CPython 3.4.1\n", |
37 |
| - "IPython 2.1.0\n", |
| 36 | + "CPython 3.4.3\n", |
| 37 | + "IPython 3.2.0\n", |
38 | 38 | "\n",
|
39 |
| - "matplotlib 1.4.0\n", |
40 |
| - "numpy 1.8.2\n" |
| 39 | + "matplotlib 1.4.3\n", |
| 40 | + "numpy 1.9.2\n" |
41 | 41 | ]
|
42 | 42 | }
|
43 | 43 | ],
|
|
89 | 89 | "cell_type": "markdown",
|
90 | 90 | "metadata": {},
|
91 | 91 | "source": [
|
92 |
| - "- [Simple Boxplot](#Simple-Boxplot)\n", |
93 |
| - "\n", |
94 |
| - "- [Black and white Boxplot](#Black-and-white-Boxplot)\n", |
95 |
| - "\n", |
96 |
| - "- [Horizontal Boxplot](#Horizontal-Boxplot)\n", |
97 |
| - "\n", |
98 |
| - "- [Filled and cylindrical boxplots](#Filled-and-cylindrical-boxplots)\n", |
99 |
| - "\n", |
100 |
| - "- [Boxplots with custom fill colors](#Boxplots-with-custom-fill-colors)\n", |
101 |
| - "\n", |
102 |
| - "- [Violin plots](#Violin-plots)" |
| 92 | + "- [When to use the figure object](#When-to-use-the-figure-object)" |
103 | 93 | ]
|
104 | 94 | },
|
105 | 95 | {
|
|
126 | 116 | "<br>"
|
127 | 117 | ]
|
128 | 118 | },
|
| 119 | + { |
| 120 | + "cell_type": "markdown", |
| 121 | + "metadata": {}, |
| 122 | + "source": [ |
| 123 | + "# When to use the figure object" |
| 124 | + ] |
| 125 | + }, |
| 126 | + { |
| 127 | + "cell_type": "markdown", |
| 128 | + "metadata": { |
| 129 | + "collapsed": false |
| 130 | + }, |
| 131 | + "source": [ |
| 132 | + "[[back to top](#Sections)]" |
| 133 | + ] |
| 134 | + }, |
| 135 | + { |
| 136 | + "cell_type": "markdown", |
| 137 | + "metadata": {}, |
| 138 | + "source": [ |
| 139 | + "Often, we see code that explicitely instantiates a new `figure` object:" |
| 140 | + ] |
| 141 | + }, |
129 | 142 | {
|
130 | 143 | "cell_type": "code",
|
131 |
| - "execution_count": null, |
| 144 | + "execution_count": 5, |
132 | 145 | "metadata": {
|
133 |
| - "collapsed": true |
| 146 | + "collapsed": false |
134 | 147 | },
|
135 |
| - "outputs": [], |
| 148 | + "outputs": [ |
| 149 | + { |
| 150 | + "data": { |
| 151 | + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEP9JREFUeJzt3W+oXGedwPHvb9MqCHbrEiiYRupqcFVoUUnaXXe3Iy30\nWsGCC1ui3lIVLAuRfVGw1hfmvolLIS9c6XK3KbXIvjALKmxcSousDkqp1dak1TUpyXYLSSpl6z9E\nCknob1/MmJxO7505M/fMzPnz/cCFe+48PfP04d4n3z6TuY3MRJLULn+y7AlIkqrn5i5JLeTmLkkt\n5OYuSS3k5i5JLeTmLkktNHFzj4ivRcRLEfGzMWO+GhEnI+KZiHhftVOUJE2rTLk/DKxs9mBE3Aq8\nMzN3AZ8F1iuamyRpRhM398z8IfCbMUM+Cnx9OPZJ4MqIuKqa6UmSZlHFmfsO4HTh+gxwdQX3lSTN\nqKoXVGPk2t9pIElLdFkF9zgL7CxcXz382mtEhBu+JM0gM0cDeqIqyv0IcAdARNwA/DYzX9poYGb6\nkcn+/fuXPoe6fLgWroVrcenjpz9Nrr02+chHkrNnB1+b1cRyj4hvADcC2yPiNLAfuHy4WT+QmY9E\nxK0RcQr4A/CpmWcjSR107hwcOADr63DwIKyuQkzd6q81cXPPzL0lxuzb2jQkqZuOHoU774SdO+HY\nMXjrW6u5r+9QXYJer7fsKdSGa3GJa3FJF9bi3DnYvx9uuQXuvhu+853qNnaA2MqZzlRPFJGLei5J\nqrNirR86NH5TjwhySS+oSpJKmHetF1XxVyElSRPM62x9M5a7JM3RImu9yHKXpDlZdK0XWe6SVLFl\n1XqR5S5JFVpmrRdZ7pJUgTrUepHlLklbVJdaL7LcJWlGdav1IstdkmZQx1ovstwlaQp1rvUiy12S\nSqp7rRdZ7pI0QVNqvchyl6QxmlTrRZa7JG2gibVeZLlL0oim1nqR5S5JQ02v9SLLXZJoR60XWe6S\nOq1NtV5kuUvqrLbVepHlLqlz2lrrRZa7pE5pc60XWe6SOqELtV5kuUtqva7UepHlLqm1ulbrRZa7\npFbqYq0XWe6SWqXLtV5kuUtqja7XepHlLqnxrPXXs9wlNZq1vjHLXVIjWevjWe6SGsdan8xyl9QY\n1np5lrukRrDWpzOx3CNiJSJORMTJiLhng8e3R8SjEXEsIn4eEXfOZaaSOslan01k5uYPRmwDngNu\nBs4CPwH2Zubxwpg14I2ZeW9EbB+OvyozL4zcK8c9lySNKtb6oUPd3NQjgsyMaf+5SeW+BziVmS9k\n5nngMHDbyJhfAlcMP78C+NXoxi5J07DWt27SmfsO4HTh+gxw/ciYB4HvRcSLwJuBv69uepK6xrP1\nakza3Muco3wROJaZvYh4B/DdiLguM38/OnBtbe3i571ej16vN8VUJbXZuXNw4ACsr8PBg7C6CjH1\nYUTz9ft9+v3+lu8z6cz9BmAtM1eG1/cCr2bmfYUxjwAHMvPx4fV/Afdk5lMj9/LMXdKGPFvf3LzO\n3J8CdkXENRHxBuB24MjImBMMXnAlIq4C3gU8P+1EJHWPZ+vzM/ZYJjMvRMQ+4DFgG/BQZh6PiLuG\njz8AfBl4OCKeYfCHxecz89dznrekhvNsfb7GHstU+kQey0jCs/VpzXos4ztUJS2Mtb44/m4ZSXPn\n2friWe6S5spaXw7LXdJcWOvLZblLqpy1vnyWu6TKWOv1YblLqoS1Xi+Wu6QtsdbryXKXNDNrvb4s\nd0lTs9brz3KXNBVrvRksd0mlWOvNYrlLmshabx7LXdKmrPXmstwlbchabzbLXdJrWOvtYLlLusha\nbw/LXZK13kKWu9Rx1no7We5SR1nr7Wa5Sx1krbef5S51iLXeHZa71BHWerdY7lLLWevdZLlLLWat\nd5flLrWQtS7LXWoZa11guUutYa2ryHKXWsBa1yjLXWowa12bsdylhrLWNY7lLjWMta4yLHepQax1\nlWW5Sw1grWtalrtUc9a6ZjGx3CNiJSJORMTJiLhnkzG9iDgaET+PiH7ls5Q6yFrXVowt94jYBtwP\n3AycBX4SEUcy83hhzJXAvwC3ZOaZiNg+zwlLXWCta6smlfse4FRmvpCZ54HDwG0jYz4OfCszzwBk\n5svVT1PqBmtdVZl05r4DOF24PgNcPzJmF3B5RHwfeDPwz5n5b9VNUeoGa11VmrS5Z4l7XA68H7gJ\neBPwRET8KDNPbnVyUhecOwcHDsD6Ohw8CKurELHsWanpJm3uZ4GdheudDOq96DTwcma+ArwSET8A\nrgNet7mvra1d/LzX69Hr9aafsdQi1rpG9ft9+v3+lu8TmZvHeURcBjzHoMpfBH4M7B15QfUvGLzo\negvwRuBJ4PbM/MXIvXLcc0ldYq2rrIggM6f+7hhb7pl5ISL2AY8B24CHMvN4RNw1fPyBzDwREY8C\nzwKvAg+ObuySLrHWtQhjy73SJ7Lc1XHWumYxl3KXVA1rXYvm75aR5si/t65lsdylObHWtUyWu1Qx\na111YLlLFbLWVReWu1QBa111Y7lLW2Stq44sd2lG1rrqzHKXZmCtq+4sd2kK1rqawnKXSrLW1SSW\nuzSBta4mstylMax1NZXlLm3AWlfTWe7SCGtdbWC5S0PWutrEcpew1tU+lrs6zVpXW1nu6ixrXW1m\nuatzrHV1geWuTrHW1RWWuzrBWlfXWO5qPWtdXWS5q7WsdXWZ5a5WstbVdZa7WsValwYsd7WGtS5d\nYrmr8ax16fUsdzWatS5tzHJXI1nr0niWuxrHWpcms9zVGNa6VJ7lrkaw1qXpWO6qNWtdmo3lrtqy\n1qXZWe6qHWtd2rqJm3tErETEiYg4GRH3jBm3OyIuRMTHqp2iuuToUdi9G55+elDrd9wBEcueldQ8\nYzf3iNgG3A+sAO8B9kbEuzcZdx/wKOCPoqZmrUvVmnTmvgc4lZkvAETEYeA24PjIuM8B3wR2Vz1B\ntZ9n61L1Jh3L7ABOF67PDL92UUTsYLDhrw+/lJXNTq1mrUvzM6ncy2zUXwG+kJkZEYHHMirBWpfm\na9LmfhbYWbjeyaDeiz4AHB7s62wHPhwR5zPzyOjN1tbWLn7e6/Xo9XrTz1iNdu4cHDgA6+tw8CCs\nrvqCqVTU7/fp9/tbvk9kbh7nEXEZ8BxwE/Ai8GNgb2aOnrn/cfzDwHcy89sbPJbjnkvtV6z1Q4es\ndamMiCAzp06gsWfumXkB2Ac8BvwC+PfMPB4Rd0XEXbNNVV3j2bq0eGPLvdInstw7yVqXtmYu5S7N\nylqXlsvfLaPK+TdhpOWz3FUZa12qD8tdlbDWpXqx3LUl1rpUT5a7ZmatS/VluWtq1rpUf5a7pmKt\nS81guasUa11qFstdE1nrUvNY7tqUtS41l+WuDVnrUrNZ7noNa11qB8tdF1nrUntY7rLWpRay3DvO\nWpfayXLvKGtdajfLvYOsdan9LPcOsdal7rDcO8Jal7rFcm85a13qJsu9xax1qbss9xay1iVZ7i1j\nrUsCy701rHVJRZZ7C1jrkkZZ7g1mrUvajOXeUNa6pHEs94ax1iWVYbk3iLUuqSzLvQGsdUnTstxr\nzlqXNAvLvaasdUlbYbnXkLUuaass9xqx1iVVxXKvCWtdUpVKlXtErETEiYg4GRH3bPD4JyLimYh4\nNiIej4hrq59qO1nrkuZhYrlHxDbgfuBm4Czwk4g4kpnHC8OeB/42M38XESvAIeCGeUy4Tax1SfNS\nptz3AKcy84XMPA8cBm4rDsjMJzLzd8PLJ4Grq51mu1jrkuatzJn7DuB04foMcP2Y8Z8BHtnKpNrM\nWpe0CGU29yx7s4j4EPBp4IMbPb62tnbx816vR6/XK3vrxjt3Dg4cgPV1OHgQVlchYtmzklQ3/X6f\nfr+/5ftE5vi9OyJuANYyc2V4fS/wambeNzLuWuDbwEpmntrgPjnpudqqWOuHDlnrksqLCDJz6hQs\nc+b+FLArIq6JiDcAtwNHRp78bQw29k9utLF3lWfrkpZl4rFMZl6IiH3AY8A24KHMPB4Rdw0ffwD4\nEvAWYD0GZw3nM3PP/KZdf56tS1qmiccylT1RR45lPFuXVKVZj2V8h2qFrHVJdeHvlqmAZ+uS6sZy\n3yJrXVIdWe4zstYl1ZnlPgNrXVLdWe5TsNYlNYXlXpK1LqlJLPcJrHVJTWS5j2GtS2oqy30D1rqk\nprPcR1jrktrAch+y1iW1ieWOtS6pfTpd7ta6pLbqbLlb65LarHPlbq1L6oJOlbu1LqkrOlHu1rqk\nrml9uVvrkrqoteVurUvqslaWu7UuqetaVe7WuiQNtKbcrXVJuqTx5W6tS9LrNbrcrXVJ2lgjy91a\nl6TxGlfu1rokTdaYcrfWJam8RpS7tS5J06l1uVvrkjSb2pa7tS5Js6tduVvrkrR1tSp3a12SqlGL\ncrfWJalaSy93a12Sqjex3CNiJSJORMTJiLhnkzFfHT7+TES8r8wTW+uSND9jN/eI2AbcD6wA7wH2\nRsS7R8bcCrwzM3cBnwXWJz3p0aOwezc8/fSg1u+4AyJm/ndonH6/v+wp1IZrcYlrcYlrsXWTyn0P\ncCozX8jM88Bh4LaRMR8Fvg6QmU8CV0bEVRvdzFof8Bv3EtfiEtfiEtdi6yadue8ATheuzwDXlxhz\nNfDS6M127/ZsXZIWYdLmniXvM3qosuE/d/fdsLrarSMYSVqGyNx8/46IG4C1zFwZXt8LvJqZ9xXG\n/CvQz8zDw+sTwI2Z+dLIvcr+QSFJKsjMqZN4Urk/BeyKiGuAF4Hbgb0jY44A+4DDwz8Mfju6sc86\nOUnSbMZu7pl5ISL2AY8B24CHMvN4RNw1fPyBzHwkIm6NiFPAH4BPzX3WkqSxxh7LSJKaqfJfPzCv\nNz010aS1iIhPDNfg2Yh4PCKuXcY8F6HM98Vw3O6IuBARH1vk/Bal5M9HLyKORsTPI6K/4CkuTImf\nj+0R8WhEHBuuxZ1LmOZCRMTXIuKliPjZmDHT7ZuZWdkHg6ObU8A1wOXAMeDdI2NuBR4Zfn498KMq\n51CXj5Jr8ZfAnw4/X+nyWhTGfQ/4T+Dvlj3vJX1PXAn8N3D18Hr7sue9xLVYA/7pj+sA/Aq4bNlz\nn9N6/A3wPuBnmzw+9b5ZdblX+qanhpu4Fpn5RGb+bnj5JIP3B7RRme8LgM8B3wT+b5GTW6Ay6/Bx\n4FuZeQYgM19e8BwXpcxa/BK4Yvj5FcCvMvPCAue4MJn5Q+A3Y4ZMvW9Wvblv9IamHSXGtHFTK7MW\nRZ8BHpnrjJZn4lpExA4GP9x//PUVbXwxqMz3xC7gzyLi+xHxVESsLmx2i1VmLR4E3hsRLwLPAP+4\noLnV0dT7ZtW/FbLSNz01XOl/p4j4EPBp4IPzm85SlVmLrwBfyMyMiOD13yNtUGYdLgfeD9wEvAl4\nIiJ+lJkn5zqzxSuzFl8EjmVmLyLeAXw3Iq7LzN/PeW51NdW+WfXmfhbYWbjeyeBPmHFjrh5+rW3K\nrAXDF1EfBFYyc9x/ljVZmbX4AIP3SsDgfPXDEXE+M48sZooLUWYdTgMvZ+YrwCsR8QPgOqBtm3uZ\ntfgr4ABAZv5PRPwv8C4G77/pmqn3zaqPZS6+6Ski3sDgTU+jP5xHgDvg4jtgN3zTUwtMXIuIeBvw\nbeCTmXlqCXNclIlrkZl/nplvz8y3Mzh3/4eWbexQ7ufjP4C/johtEfEmBi+e/WLB81yEMmtxArgZ\nYHi+/C7g+YXOsj6m3jcrLff0TU8XlVkL4EvAW4D1YbGez8w9y5rzvJRci9Yr+fNxIiIeBZ4FXgUe\nzMzWbe4lvye+DDwcEc8wCNHPZ+avlzbpOYqIbwA3Atsj4jSwn8ER3cz7pm9ikqQWqsX/Q1WSVC03\nd0lqITd3SWohN3dJaiE3d0lqITd3SWohN3dJaiE3d0lqof8H/OANfF35uk4AAAAASUVORK5CYII=\n", |
| 152 | + "text/plain": [ |
| 153 | + "<matplotlib.figure.Figure at 0x1065dba58>" |
| 154 | + ] |
| 155 | + }, |
| 156 | + "metadata": {}, |
| 157 | + "output_type": "display_data" |
| 158 | + } |
| 159 | + ], |
136 | 160 | "source": [
|
137 |
| - "# When to " |
| 161 | + "import matplotlib.pyplot as plt\n", |
| 162 | + "\n", |
| 163 | + "fig = plt.figure()\n", |
| 164 | + "\n", |
| 165 | + "plt.plot([0, 1], [0, 1])\n", |
| 166 | + "plt.show()" |
138 | 167 | ]
|
139 | 168 | },
|
140 | 169 | {
|
141 | 170 | "cell_type": "markdown",
|
| 171 | + "metadata": {}, |
| 172 | + "source": [ |
| 173 | + "If we are not planning to manipulate the figure object or add subplots to the figure, this may be redundant. Why? \n", |
| 174 | + "As nicely explained on [SO](http://stackoverflow.com/questions/31729220/when-is-matplotlibs-pyplot-figure-redundant/31730499#31730499), the `plot` function retrieves the current figure automatically via `gcf` (\"get current figure\") nested inside a `gca` (\"get current axes\") call. Thus, it really doesn't matter if we create a figure prior to `plot` unless we are planning to modify it in some way." |
| 175 | + ] |
| 176 | + }, |
| 177 | + { |
| 178 | + "cell_type": "code", |
| 179 | + "execution_count": 6, |
142 | 180 | "metadata": {
|
143 | 181 | "collapsed": false
|
144 | 182 | },
|
| 183 | + "outputs": [ |
| 184 | + { |
| 185 | + "data": { |
| 186 | + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEP9JREFUeJzt3W+oXGedwPHvb9MqCHbrEiiYRupqcFVoUUnaXXe3Iy30\nWsGCC1ui3lIVLAuRfVGw1hfmvolLIS9c6XK3KbXIvjALKmxcSousDkqp1dak1TUpyXYLSSpl6z9E\nCknob1/MmJxO7505M/fMzPnz/cCFe+48PfP04d4n3z6TuY3MRJLULn+y7AlIkqrn5i5JLeTmLkkt\n5OYuSS3k5i5JLeTmLkktNHFzj4ivRcRLEfGzMWO+GhEnI+KZiHhftVOUJE2rTLk/DKxs9mBE3Aq8\nMzN3AZ8F1iuamyRpRhM398z8IfCbMUM+Cnx9OPZJ4MqIuKqa6UmSZlHFmfsO4HTh+gxwdQX3lSTN\nqKoXVGPk2t9pIElLdFkF9zgL7CxcXz382mtEhBu+JM0gM0cDeqIqyv0IcAdARNwA/DYzX9poYGb6\nkcn+/fuXPoe6fLgWroVrcenjpz9Nrr02+chHkrNnB1+b1cRyj4hvADcC2yPiNLAfuHy4WT+QmY9E\nxK0RcQr4A/CpmWcjSR107hwcOADr63DwIKyuQkzd6q81cXPPzL0lxuzb2jQkqZuOHoU774SdO+HY\nMXjrW6u5r+9QXYJer7fsKdSGa3GJa3FJF9bi3DnYvx9uuQXuvhu+853qNnaA2MqZzlRPFJGLei5J\nqrNirR86NH5TjwhySS+oSpJKmHetF1XxVyElSRPM62x9M5a7JM3RImu9yHKXpDlZdK0XWe6SVLFl\n1XqR5S5JFVpmrRdZ7pJUgTrUepHlLklbVJdaL7LcJWlGdav1IstdkmZQx1ovstwlaQp1rvUiy12S\nSqp7rRdZ7pI0QVNqvchyl6QxmlTrRZa7JG2gibVeZLlL0oim1nqR5S5JQ02v9SLLXZJoR60XWe6S\nOq1NtV5kuUvqrLbVepHlLqlz2lrrRZa7pE5pc60XWe6SOqELtV5kuUtqva7UepHlLqm1ulbrRZa7\npFbqYq0XWe6SWqXLtV5kuUtqja7XepHlLqnxrPXXs9wlNZq1vjHLXVIjWevjWe6SGsdan8xyl9QY\n1np5lrukRrDWpzOx3CNiJSJORMTJiLhng8e3R8SjEXEsIn4eEXfOZaaSOslan01k5uYPRmwDngNu\nBs4CPwH2Zubxwpg14I2ZeW9EbB+OvyozL4zcK8c9lySNKtb6oUPd3NQjgsyMaf+5SeW+BziVmS9k\n5nngMHDbyJhfAlcMP78C+NXoxi5J07DWt27SmfsO4HTh+gxw/ciYB4HvRcSLwJuBv69uepK6xrP1\nakza3Muco3wROJaZvYh4B/DdiLguM38/OnBtbe3i571ej16vN8VUJbXZuXNw4ACsr8PBg7C6CjH1\nYUTz9ft9+v3+lu8z6cz9BmAtM1eG1/cCr2bmfYUxjwAHMvPx4fV/Afdk5lMj9/LMXdKGPFvf3LzO\n3J8CdkXENRHxBuB24MjImBMMXnAlIq4C3gU8P+1EJHWPZ+vzM/ZYJjMvRMQ+4DFgG/BQZh6PiLuG\njz8AfBl4OCKeYfCHxecz89dznrekhvNsfb7GHstU+kQey0jCs/VpzXos4ztUJS2Mtb44/m4ZSXPn\n2friWe6S5spaXw7LXdJcWOvLZblLqpy1vnyWu6TKWOv1YblLqoS1Xi+Wu6QtsdbryXKXNDNrvb4s\nd0lTs9brz3KXNBVrvRksd0mlWOvNYrlLmshabx7LXdKmrPXmstwlbchabzbLXdJrWOvtYLlLusha\nbw/LXZK13kKWu9Rx1no7We5SR1nr7Wa5Sx1krbef5S51iLXeHZa71BHWerdY7lLLWevdZLlLLWat\nd5flLrWQtS7LXWoZa11guUutYa2ryHKXWsBa1yjLXWowa12bsdylhrLWNY7lLjWMta4yLHepQax1\nlWW5Sw1grWtalrtUc9a6ZjGx3CNiJSJORMTJiLhnkzG9iDgaET+PiH7ls5Q6yFrXVowt94jYBtwP\n3AycBX4SEUcy83hhzJXAvwC3ZOaZiNg+zwlLXWCta6smlfse4FRmvpCZ54HDwG0jYz4OfCszzwBk\n5svVT1PqBmtdVZl05r4DOF24PgNcPzJmF3B5RHwfeDPwz5n5b9VNUeoGa11VmrS5Z4l7XA68H7gJ\neBPwRET8KDNPbnVyUhecOwcHDsD6Ohw8CKurELHsWanpJm3uZ4GdheudDOq96DTwcma+ArwSET8A\nrgNet7mvra1d/LzX69Hr9aafsdQi1rpG9ft9+v3+lu8TmZvHeURcBjzHoMpfBH4M7B15QfUvGLzo\negvwRuBJ4PbM/MXIvXLcc0ldYq2rrIggM6f+7hhb7pl5ISL2AY8B24CHMvN4RNw1fPyBzDwREY8C\nzwKvAg+ObuySLrHWtQhjy73SJ7Lc1XHWumYxl3KXVA1rXYvm75aR5si/t65lsdylObHWtUyWu1Qx\na111YLlLFbLWVReWu1QBa111Y7lLW2Stq44sd2lG1rrqzHKXZmCtq+4sd2kK1rqawnKXSrLW1SSW\nuzSBta4mstylMax1NZXlLm3AWlfTWe7SCGtdbWC5S0PWutrEcpew1tU+lrs6zVpXW1nu6ixrXW1m\nuatzrHV1geWuTrHW1RWWuzrBWlfXWO5qPWtdXWS5q7WsdXWZ5a5WstbVdZa7WsValwYsd7WGtS5d\nYrmr8ax16fUsdzWatS5tzHJXI1nr0niWuxrHWpcms9zVGNa6VJ7lrkaw1qXpWO6qNWtdmo3lrtqy\n1qXZWe6qHWtd2rqJm3tErETEiYg4GRH3jBm3OyIuRMTHqp2iuuToUdi9G55+elDrd9wBEcueldQ8\nYzf3iNgG3A+sAO8B9kbEuzcZdx/wKOCPoqZmrUvVmnTmvgc4lZkvAETEYeA24PjIuM8B3wR2Vz1B\ntZ9n61L1Jh3L7ABOF67PDL92UUTsYLDhrw+/lJXNTq1mrUvzM6ncy2zUXwG+kJkZEYHHMirBWpfm\na9LmfhbYWbjeyaDeiz4AHB7s62wHPhwR5zPzyOjN1tbWLn7e6/Xo9XrTz1iNdu4cHDgA6+tw8CCs\nrvqCqVTU7/fp9/tbvk9kbh7nEXEZ8BxwE/Ai8GNgb2aOnrn/cfzDwHcy89sbPJbjnkvtV6z1Q4es\ndamMiCAzp06gsWfumXkB2Ac8BvwC+PfMPB4Rd0XEXbNNVV3j2bq0eGPLvdInstw7yVqXtmYu5S7N\nylqXlsvfLaPK+TdhpOWz3FUZa12qD8tdlbDWpXqx3LUl1rpUT5a7ZmatS/VluWtq1rpUf5a7pmKt\nS81guasUa11qFstdE1nrUvNY7tqUtS41l+WuDVnrUrNZ7noNa11qB8tdF1nrUntY7rLWpRay3DvO\nWpfayXLvKGtdajfLvYOsdan9LPcOsdal7rDcO8Jal7rFcm85a13qJsu9xax1qbss9xay1iVZ7i1j\nrUsCy701rHVJRZZ7C1jrkkZZ7g1mrUvajOXeUNa6pHEs94ax1iWVYbk3iLUuqSzLvQGsdUnTstxr\nzlqXNAvLvaasdUlbYbnXkLUuaass9xqx1iVVxXKvCWtdUpVKlXtErETEiYg4GRH3bPD4JyLimYh4\nNiIej4hrq59qO1nrkuZhYrlHxDbgfuBm4Czwk4g4kpnHC8OeB/42M38XESvAIeCGeUy4Tax1SfNS\nptz3AKcy84XMPA8cBm4rDsjMJzLzd8PLJ4Grq51mu1jrkuatzJn7DuB04foMcP2Y8Z8BHtnKpNrM\nWpe0CGU29yx7s4j4EPBp4IMbPb62tnbx816vR6/XK3vrxjt3Dg4cgPV1OHgQVlchYtmzklQ3/X6f\nfr+/5ftE5vi9OyJuANYyc2V4fS/wambeNzLuWuDbwEpmntrgPjnpudqqWOuHDlnrksqLCDJz6hQs\nc+b+FLArIq6JiDcAtwNHRp78bQw29k9utLF3lWfrkpZl4rFMZl6IiH3AY8A24KHMPB4Rdw0ffwD4\nEvAWYD0GZw3nM3PP/KZdf56tS1qmiccylT1RR45lPFuXVKVZj2V8h2qFrHVJdeHvlqmAZ+uS6sZy\n3yJrXVIdWe4zstYl1ZnlPgNrXVLdWe5TsNYlNYXlXpK1LqlJLPcJrHVJTWS5j2GtS2oqy30D1rqk\nprPcR1jrktrAch+y1iW1ieWOtS6pfTpd7ta6pLbqbLlb65LarHPlbq1L6oJOlbu1LqkrOlHu1rqk\nrml9uVvrkrqoteVurUvqslaWu7UuqetaVe7WuiQNtKbcrXVJuqTx5W6tS9LrNbrcrXVJ2lgjy91a\nl6TxGlfu1rokTdaYcrfWJam8RpS7tS5J06l1uVvrkjSb2pa7tS5Js6tduVvrkrR1tSp3a12SqlGL\ncrfWJalaSy93a12Sqjex3CNiJSJORMTJiLhnkzFfHT7+TES8r8wTW+uSND9jN/eI2AbcD6wA7wH2\nRsS7R8bcCrwzM3cBnwXWJz3p0aOwezc8/fSg1u+4AyJm/ndonH6/v+wp1IZrcYlrcYlrsXWTyn0P\ncCozX8jM88Bh4LaRMR8Fvg6QmU8CV0bEVRvdzFof8Bv3EtfiEtfiEtdi6yadue8ATheuzwDXlxhz\nNfDS6M127/ZsXZIWYdLmniXvM3qosuE/d/fdsLrarSMYSVqGyNx8/46IG4C1zFwZXt8LvJqZ9xXG\n/CvQz8zDw+sTwI2Z+dLIvcr+QSFJKsjMqZN4Urk/BeyKiGuAF4Hbgb0jY44A+4DDwz8Mfju6sc86\nOUnSbMZu7pl5ISL2AY8B24CHMvN4RNw1fPyBzHwkIm6NiFPAH4BPzX3WkqSxxh7LSJKaqfJfPzCv\nNz010aS1iIhPDNfg2Yh4PCKuXcY8F6HM98Vw3O6IuBARH1vk/Bal5M9HLyKORsTPI6K/4CkuTImf\nj+0R8WhEHBuuxZ1LmOZCRMTXIuKliPjZmDHT7ZuZWdkHg6ObU8A1wOXAMeDdI2NuBR4Zfn498KMq\n51CXj5Jr8ZfAnw4/X+nyWhTGfQ/4T+Dvlj3vJX1PXAn8N3D18Hr7sue9xLVYA/7pj+sA/Aq4bNlz\nn9N6/A3wPuBnmzw+9b5ZdblX+qanhpu4Fpn5RGb+bnj5JIP3B7RRme8LgM8B3wT+b5GTW6Ay6/Bx\n4FuZeQYgM19e8BwXpcxa/BK4Yvj5FcCvMvPCAue4MJn5Q+A3Y4ZMvW9Wvblv9IamHSXGtHFTK7MW\nRZ8BHpnrjJZn4lpExA4GP9x//PUVbXwxqMz3xC7gzyLi+xHxVESsLmx2i1VmLR4E3hsRLwLPAP+4\noLnV0dT7ZtW/FbLSNz01XOl/p4j4EPBp4IPzm85SlVmLrwBfyMyMiOD13yNtUGYdLgfeD9wEvAl4\nIiJ+lJkn5zqzxSuzFl8EjmVmLyLeAXw3Iq7LzN/PeW51NdW+WfXmfhbYWbjeyeBPmHFjrh5+rW3K\nrAXDF1EfBFYyc9x/ljVZmbX4AIP3SsDgfPXDEXE+M48sZooLUWYdTgMvZ+YrwCsR8QPgOqBtm3uZ\ntfgr4ABAZv5PRPwv8C4G77/pmqn3zaqPZS6+6Ski3sDgTU+jP5xHgDvg4jtgN3zTUwtMXIuIeBvw\nbeCTmXlqCXNclIlrkZl/nplvz8y3Mzh3/4eWbexQ7ufjP4C/johtEfEmBi+e/WLB81yEMmtxArgZ\nYHi+/C7g+YXOsj6m3jcrLff0TU8XlVkL4EvAW4D1YbGez8w9y5rzvJRci9Yr+fNxIiIeBZ4FXgUe\nzMzWbe4lvye+DDwcEc8wCNHPZ+avlzbpOYqIbwA3Atsj4jSwn8ER3cz7pm9ikqQWqsX/Q1WSVC03\nd0lqITd3SWohN3dJaiE3d0lqITd3SWohN3dJaiE3d0lqof8H/OANfF35uk4AAAAASUVORK5CYII=\n", |
| 187 | + "text/plain": [ |
| 188 | + "<matplotlib.figure.Figure at 0x104f52940>" |
| 189 | + ] |
| 190 | + }, |
| 191 | + "metadata": {}, |
| 192 | + "output_type": "display_data" |
| 193 | + } |
| 194 | + ], |
145 | 195 | "source": [
|
146 |
| - "[[back to top](#Sections)]" |
| 196 | + "import matplotlib.pyplot as plt\n", |
| 197 | + "\n", |
| 198 | + "plt.plot([0, 1], [0, 1])\n", |
| 199 | + "plt.show()" |
147 | 200 | ]
|
148 | 201 | },
|
149 | 202 | {
|
|
0 commit comments