-
Notifications
You must be signed in to change notification settings - Fork 119
/
Copy pathmain.py
802 lines (646 loc) · 28.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
from __future__ import division
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", message="size changed")
import sys
import os
import time
import math
import random
try:
import Queue as queue
except ImportError:
import queue
import threading
import h5py
import json
import numpy as np
import tensorflow as tf
from termcolor import colored, cprint
from config import config, loadDatasetConfig, parseArgs
from preprocess import Preprocesser, bold, bcolored, writeline, writelist
from model import MACnet
from collections import defaultdict
############################################# loggers #############################################
# Writes log header to file
def logInit():
with open(config.logFile(), "a+") as outFile:
writeline(outFile, config.expName)
headers = ["epoch", "trainAcc", "valAcc", "trainLoss", "valLoss"]
if config.evalTrain:
headers += ["evalTrainAcc", "evalTrainLoss"]
if config.extra:
if config.evalTrain:
headers += ["thAcc", "thLoss"]
headers += ["vhAcc", "vhLoss"]
headers += ["time", "lr"]
writelist(outFile, headers)
# lr assumed to be last
# Writes log record to file
def logRecord(epoch, epochTime, lr, trainRes, evalRes, extraEvalRes):
with open(config.logFile(), "a+") as outFile:
record = [epoch, trainRes["acc"], evalRes["val"]["acc"], trainRes["loss"], evalRes["val"]["loss"]]
if config.evalTrain:
record += [evalRes["evalTrain"]["acc"], evalRes["evalTrain"]["loss"]]
if config.extra:
if config.evalTrain:
record += [extraEvalRes["evalTrain"]["acc"], extraEvalRes["evalTrain"]["loss"]]
record += [extraEvalRes["val"]["acc"], extraEvalRes["val"]["loss"]]
record += [epochTime, lr]
writelist(outFile, record)
# Gets last logged epoch and learning rate
def lastLoggedEpoch():
with open(config.logFile(), "r") as inFile:
lastLine = list(inFile)[-1].split(",")
epoch = int(lastLine[0])
lr = float(lastLine[-1])
return epoch, lr
################################## printing, output and analysis ##################################
# Analysis by type
analysisQuestionLims = [(0,18),(19,float("inf"))]
analysisProgramLims = [(0,12),(13,float("inf"))]
toArity = lambda instance: instance["programSeq"][-1].split("_", 1)[0]
toType = lambda instance: instance["programSeq"][-1].split("_", 1)[1]
def fieldLenIsInRange(field):
return lambda instance, group: \
(len(instance[field]) >= group[0] and
len(instance[field]) <= group[1])
# Groups instances based on a key
def grouperKey(toKey):
def grouper(instances):
res = defaultdict(list)
for instance in instances:
res[toKey(instance)].append(instance)
return res
return grouper
# Groups instances according to their match to condition
def grouperCond(groups, isIn):
def grouper(instances):
res = {}
for group in groups:
res[group] = (instance for instance in instances if isIn(instance, group))
return res
return grouper
groupers = {
"questionLength": grouperCond(analysisQuestionLims, fieldLenIsInRange("questionSeq")),
"programLength": grouperCond(analysisProgramLims, fieldLenIsInRange("programSeq")),
"arity": grouperKey(toArity),
"type": grouperKey(toType)
}
# Computes average
def avg(instances, field):
if len(instances) == 0:
return 0.0
return sum(instances[field]) / len(instances)
# Prints analysis of questions loss and accuracy by their group
def printAnalysis(res):
if config.analysisType != "":
print("Analysis by {type}".format(type = config.analysisType))
groups = groupers[config.analysisType](res["preds"])
for key in groups:
instances = groups[key]
avgLoss = avg(instances, "loss")
avgAcc = avg(instances, "acc")
num = len(instances)
print("Group {key}: Loss: {loss}, Acc: {acc}, Num: {num}".format(key, avgLoss, avgAcc, num))
# Print results for a tier
def printTierResults(tierName, res, color):
if res is None:
return
print("{tierName} Loss: {loss}, {tierName} accuracy: {acc}".format(tierName = tierName,
loss = bcolored(res["loss"], color),
acc = bcolored(res["acc"], color)))
printAnalysis(res)
# Prints dataset results (for several tiers)
def printDatasetResults(trainRes, evalRes, extraEvalRes):
printTierResults("Training", trainRes, "magenta")
printTierResults("Training EMA", evalRes["evalTrain"], "red")
printTierResults("Validation", evalRes["val"], "cyan")
printTierResults("Extra Training EMA", extraEvalRes["evalTrain"], "red")
printTierResults("Extra Validation", extraEvalRes["val"], "cyan")
# Writes predictions for several tiers
def writePreds(preprocessor, evalRes, extraEvalRes):
preprocessor.writePreds(evalRes["evalTrain"], "evalTrain")
preprocessor.writePreds(evalRes["val"], "val")
preprocessor.writePreds(evalRes["test"], "test")
preprocessor.writePreds(extraEvalRes["evalTrain"], "evalTrain", "H")
preprocessor.writePreds(extraEvalRes["val"], "val", "H")
preprocessor.writePreds(extraEvalRes["test"], "test", "H")
############################################# session #############################################
# Initializes TF session. Sets GPU memory configuration.
def setSession():
sessionConfig = tf.ConfigProto(allow_soft_placement = True, log_device_placement = False)
if config.allowGrowth:
sessionConfig.gpu_options.allow_growth = True
if config.maxMemory < 1.0:
sessionConfig.gpu_options.per_process_gpu_memory_fraction = config.maxMemory
return sessionConfig
############################################## savers #############################################
# Initializes savers (standard, optional exponential-moving-average and optional for subset of variables)
def setSavers(model):
saver = tf.train.Saver(max_to_keep = config.weightsToKeep)
subsetSaver = None
if config.saveSubset:
isRelevant = lambda var: any(s in var.name for s in config.varSubset)
relevantVars = [var for var in tf.global_variables() if isRelevant(var)]
subsetSaver = tf.train.Saver(relevantVars, max_to_keep = config.weightsToKeep, allow_empty = True)
emaSaver = None
if config.useEMA:
emaSaver = tf.train.Saver(model.emaDict, max_to_keep = config.weightsToKeep)
return {
"saver": saver,
"subsetSaver": subsetSaver,
"emaSaver": emaSaver
}
################################### restore / initialize weights ##################################
# Restores weights of specified / last epoch if on restore mod.
# Otherwise, initializes weights.
def loadWeights(sess, saver, init):
if config.restoreEpoch > 0 or config.restore:
# restore last epoch only if restoreEpoch isn't set
if config.restoreEpoch == 0:
# restore last logged epoch
config.restoreEpoch, config.lr = lastLoggedEpoch()
print(bcolored("Restoring epoch {} and lr {}".format(config.restoreEpoch, config.lr),"cyan"))
print(bcolored("Restoring weights", "blue"))
saver.restore(sess, config.weightsFile(config.restoreEpoch))
epoch = config.restoreEpoch
else:
print(bcolored("Initializing weights", "blue"))
sess.run(init)
logInit()
epoch = 0
return epoch
###################################### training / evaluation ######################################
# Chooses data to train on (main / extra) data.
def chooseTrainingData(data):
trainingData = data["main"]["train"]
alterData = None
if config.extra:
if config.trainExtra:
if config.extraVal:
trainingData = data["extra"]["val"]
else:
trainingData = data["extra"]["train"]
if config.alterExtra:
alterData = data["extra"]["train"]
return trainingData, alterData
#### evaluation
# Runs evaluation on train / val / test datasets.
def runEvaluation(sess, model, data, epoch, evalTrain = True, evalTest = False, getAtt = None):
if getAtt is None:
getAtt = config.getAtt
res = {"evalTrain": None, "val": None, "test": None}
if data is not None:
if evalTrain and config.evalTrain:
res["evalTrain"] = runEpoch(sess, model, data["evalTrain"], train = False, epoch = epoch, getAtt = getAtt)
res["val"] = runEpoch(sess, model, data["val"], train = False, epoch = epoch, getAtt = getAtt)
if evalTest or config.test:
res["test"] = runEpoch(sess, model, data["test"], train = False, epoch = epoch, getAtt = getAtt)
return res
## training conditions (comparing current epoch result to prior ones)
def improveEnough(curr, prior, lr):
prevRes = prior["prev"]["res"]
currRes = curr["res"]
if prevRes is None:
return True
prevTrainLoss = prevRes["train"]["loss"]
currTrainLoss = currRes["train"]["loss"]
lossDiff = prevTrainLoss - currTrainLoss
notImprove = ((lossDiff < 0.015 and prevTrainLoss < 0.5 and lr > 0.00002) or \
(lossDiff < 0.008 and prevTrainLoss < 0.15 and lr > 0.00001) or \
(lossDiff < 0.003 and prevTrainLoss < 0.10 and lr > 0.000005))
#(prevTrainLoss < 0.2 and config.lr > 0.000015)
return not notImprove
def better(currRes, bestRes):
return currRes["val"]["acc"] > bestRes["val"]["acc"]
############################################## data ###############################################
#### instances and batching
# Trims sequences based on their max length.
def trim2DVectors(vectors, vectorsLengths):
maxLength = np.max(vectorsLengths)
return vectors[:,:maxLength]
# Trims batch based on question length.
def trimData(data):
data["questions"] = trim2DVectors(data["questions"], data["questionLengths"])
return data
# Gets batch / bucket size.
def getLength(data):
return len(data["instances"])
# Selects the data entries that match the indices.
def selectIndices(data, indices):
def select(field, indices):
if type(field) is np.ndarray:
return field[indices]
if type(field) is list:
return [field[i] for i in indices]
else:
return field
selected = {k : select(d, indices) for k,d in data.items()}
return selected
# Batches data into a a list of batches of batchSize.
# Shuffles the data by default.
def getBatches(data, batchSize = None, shuffle = True):
batches = []
dataLen = getLength(data)
if batchSize is None or batchSize > dataLen:
batchSize = dataLen
indices = np.arange(dataLen)
if shuffle:
np.random.shuffle(indices)
for batchStart in range(0, dataLen, batchSize):
batchIndices = indices[batchStart : batchStart + batchSize]
# if len(batchIndices) == batchSize?
if len(batchIndices) >= config.gpusNum:
batch = selectIndices(data, batchIndices)
batches.append(batch)
# batchesIndices.append((data, batchIndices))
return batches
#### image batches
# Opens image files.
def openImageFiles(images):
images["imagesFile"] = h5py.File(images["imagesFilename"], "r")
images["imagesIds"] = None
if config.dataset == "NLVR":
with open(images["imageIdsFilename"], "r") as imageIdsFile:
images["imagesIds"] = json.load(imageIdsFile)
# Closes image files.
def closeImageFiles(images):
images["imagesFile"].close()
# Loads an images from file for a given data batch.
def loadImageBatch(images, batch):
imagesFile = images["imagesFile"]
id2idx = images["imagesIds"]
toIndex = lambda imageId: imageId
if id2idx is not None:
toIndex = lambda imageId: id2idx[imageId]
imageBatch = np.stack([imagesFile["features"][toIndex(imageId)] for imageId in batch["imageIds"]], axis = 0)
return {"images": imageBatch, "imageIds": batch["imageIds"]}
# Loads images for several num batches in the batches list from start index.
def loadImageBatches(images, batches, start, num):
batches = batches[start: start + num]
return [loadImageBatch(images, batch) for batch in batches]
#### data alternation
# Alternates main training batches with extra data.
def alternateData(batches, alterData, dataLen):
alterData = alterData["data"][0] # data isn't bucketed for altered data
# computes number of repetitions
needed = math.ceil(len(batches) / config.alterNum)
print(bold("Extra batches needed: %d") % needed)
perData = math.ceil(getLength(alterData) / config.batchSize)
print(bold("Batches per extra data: %d") % perData)
repetitions = math.ceil(needed / perData)
print(bold("reps: %d") % repetitions)
# make alternate batches
alterBatches = []
for _ in range(repetitions):
repBatches = getBatches(alterData, batchSize = config.batchSize)
random.shuffle(repBatches)
alterBatches += repBatches
print(bold("Batches num: %d") + len(alterBatches))
# alternate data with extra data
curr = len(batches) - 1
for alterBatch in alterBatches:
if curr < 0:
# print(colored("too many" + str(curr) + " " + str(len(batches)),"red"))
break
batches.insert(curr, alterBatch)
dataLen += getLength(alterBatch)
curr -= config.alterNum
return batches, dataLen
############################################ threading ############################################
imagesQueue = queue.Queue(maxsize = 20) # config.tasksNum
inQueue = queue.Queue(maxsize = 1)
outQueue = queue.Queue(maxsize = 1)
# Runs a worker thread(s) to load images while training .
class StoppableThread(threading.Thread):
# Thread class with a stop() method. The thread itself has to check
# regularly for the stopped() condition.
def __init__(self, images, batches): # i
super(StoppableThread, self).__init__()
# self.i = i
self.images = images
self.batches = batches
self._stop_event = threading.Event()
# def __init__(self, args):
# super(StoppableThread, self).__init__(args = args)
# self._stop_event = threading.Event()
# def __init__(self, target, args):
# super(StoppableThread, self).__init__(target = target, args = args)
# self._stop_event = threading.Event()
def stop(self):
self._stop_event.set()
def stopped(self):
return self._stop_event.is_set()
def run(self):
while not self.stopped():
try:
batchNum = inQueue.get(timeout = 60)
nextItem = loadImageBatches(self.images, self.batches, batchNum, int(config.taskSize / 2))
outQueue.put(nextItem)
# inQueue.task_done()
except:
pass
# print("worker %d done", self.i)
def loaderRun(images, batches):
batchNum = 0
# if config.workers == 2:
# worker = StoppableThread(images, batches) # i,
# worker.daemon = True
# worker.start()
# while batchNum < len(batches):
# inQueue.put(batchNum + int(config.taskSize / 2))
# nextItem1 = loadImageBatches(images, batches, batchNum, int(config.taskSize / 2))
# nextItem2 = outQueue.get()
# nextItem = nextItem1 + nextItem2
# assert len(nextItem) == min(config.taskSize, len(batches) - batchNum)
# batchNum += config.taskSize
# imagesQueue.put(nextItem)
# worker.stop()
# else:
while batchNum < len(batches):
nextItem = loadImageBatches(images, batches, batchNum, config.taskSize)
assert len(nextItem) == min(config.taskSize, len(batches) - batchNum)
batchNum += config.taskSize
imagesQueue.put(nextItem)
# print("manager loader done")
########################################## stats tracking #########################################
# Computes exponential moving average.
def emaAvg(avg, value):
if avg is None:
return value
emaRate = 0.98
return avg * emaRate + value * (1 - emaRate)
# Initializes training statistics.
def initStats():
return {
"totalBatches": 0,
"totalData": 0,
"totalLoss": 0.0,
"totalCorrect": 0,
"loss": 0.0,
"acc": 0.0,
"emaLoss": None,
"emaAcc": None,
}
# Updates statistics with training results of a batch
def updateStats(stats, res, batch):
stats["totalBatches"] += 1
stats["totalData"] += getLength(batch)
stats["totalLoss"] += res["loss"]
stats["totalCorrect"] += res["correctNum"]
stats["loss"] = stats["totalLoss"] / stats["totalBatches"]
stats["acc"] = stats["totalCorrect"] / stats["totalData"]
stats["emaLoss"] = emaAvg(stats["emaLoss"], res["loss"])
stats["emaAcc"] = emaAvg(stats["emaAcc"], res["acc"])
return stats
# auto-encoder ae = {:2.4f} autoEncLoss,
# Translates training statistics into a string to print
def statsToStr(stats, res, epoch, batchNum, dataLen, startTime):
formatStr = "\reb {epoch},{batchNum} ({dataProcessed} / {dataLen:5d}), " + \
"t = {time} ({loadTime:2.2f}+{trainTime:2.2f}), " + \
"lr {lr}, l = {loss}, a = {acc}, avL = {avgLoss}, " + \
"avA = {avgAcc}, g = {gradNorm:2.4f}, " + \
"emL = {emaLoss:2.4f}, emA = {emaAcc:2.4f}; " + \
"{expname}" # {machine}/{gpu}"
s_epoch = bcolored("{:2d}".format(epoch),"green")
s_batchNum = "{:3d}".format(batchNum)
s_dataProcessed = bcolored("{:5d}".format(stats["totalData"]),"green")
s_dataLen = dataLen
s_time = bcolored("{:2.2f}".format(time.time() - startTime),"green")
s_loadTime = res["readTime"]
s_trainTime = res["trainTime"]
s_lr = bold(config.lr)
s_loss = bcolored("{:2.4f}".format(res["loss"]), "blue")
s_acc = bcolored("{:2.4f}".format(res["acc"]),"blue")
s_avgLoss = bcolored("{:2.4f}".format(stats["loss"]), "blue")
s_avgAcc = bcolored("{:2.4f}".format(stats["acc"]),"red")
s_gradNorm = res["gradNorm"]
s_emaLoss = stats["emaLoss"]
s_emaAcc = stats["emaAcc"]
s_expname = config.expName
# s_machine = bcolored(config.dataPath[9:11],"green")
# s_gpu = bcolored(config.gpus,"green")
return formatStr.format(epoch = s_epoch, batchNum = s_batchNum, dataProcessed = s_dataProcessed,
dataLen = s_dataLen, time = s_time, loadTime = s_loadTime,
trainTime = s_trainTime, lr = s_lr, loss = s_loss, acc = s_acc,
avgLoss = s_avgLoss, avgAcc = s_avgAcc, gradNorm = s_gradNorm,
emaLoss = s_emaLoss, emaAcc = s_emaAcc, expname = s_expname)
# machine = s_machine, gpu = s_gpu)
# collectRuntimeStats, writer = None,
'''
Runs an epoch with model and session over the data.
1. Batches the data and optionally mix it with the extra alterData.
2. Start worker threads to load images in parallel to training.
3. Runs model for each batch, and gets results (e.g. loss, accuracy).
4. Updates and prints statistics based on batch results.
5. Once in a while (every config.saveEvery), save weights.
Args:
sess: TF session to run with.
model: model to process data. Has runBatch method that process a given batch.
(See model.py for further details).
data: data to use for training/evaluation.
epoch: epoch number.
saver: TF saver to save weights
calle: a method to call every number of iterations (config.calleEvery)
alterData: extra data to mix with main data while training.
getAtt: True to return model attentions.
'''
def runEpoch(sess, model, data, train, epoch, saver = None, calle = None,
alterData = None, getAtt = False):
# train = data["train"] better than outside argument
# initialization
startTime0 = time.time()
stats = initStats()
preds = []
# open image files
openImageFiles(data["images"])
## prepare batches
buckets = data["data"]
dataLen = sum(getLength(bucket) for bucket in buckets)
# make batches and randomize
batches = []
for bucket in buckets:
batches += getBatches(bucket, batchSize = config.batchSize)
random.shuffle(batches)
# alternate with extra data
if train and alterData is not None:
batches, dataLen = alternateData(batches, alterData, dataLen)
# start image loaders
if config.parallel:
loader = threading.Thread(target = loaderRun, args = (data["images"], batches))
loader.daemon = True
loader.start()
for batchNum, batch in enumerate(batches):
startTime = time.time()
# prepare batch
batch = trimData(batch)
# load images batch
if config.parallel:
if batchNum % config.taskSize == 0:
imagesBatches = imagesQueue.get()
imagesBatch = imagesBatches[batchNum % config.taskSize] # len(imagesBatches)
else:
imagesBatch = loadImageBatch(data["images"], batch)
for i, imageId in enumerate(batch["imageIds"]):
assert imageId == imagesBatch["imageIds"][i]
# run batch
res = model.runBatch(sess, batch, imagesBatch, train, getAtt)
# update stats
stats = updateStats(stats, res, batch)
preds += res["preds"]
# if config.summerize and writer is not None:
# writer.add_summary(res["summary"], epoch)
sys.stdout.write(statsToStr(stats, res, epoch, batchNum, dataLen, startTime))
sys.stdout.flush()
# save weights
if saver is not None:
if batchNum > 0 and batchNum % config.saveEvery == 0:
print("")
print(bold("saving weights"))
saver.save(sess, config.weightsFile(epoch))
# calle
if calle is not None:
if batchNum > 0 and batchNum % config.calleEvery == 0:
calle()
sys.stdout.write("\r")
sys.stdout.flush()
print("")
closeImageFiles(data["images"])
if config.parallel:
loader.join() # should work
return {"loss": stats["loss"],
"acc": stats["acc"],
"preds": preds
}
'''
Trains/evaluates the model:
1. Set GPU configurations.
2. Preprocess data: reads from datasets, and convert into numpy arrays.
3. Builds the TF computational graph for the MAC model.
4. Starts a session and initialize / restores weights.
5. If config.train is True, trains the model for number of epochs:
a. Trains the model on training data
b. Evaluates the model on training / validation data, optionally with
exponential-moving-average weights.
c. Prints and logs statistics, and optionally saves model predictions.
d. Optionally reduces learning rate if losses / accuracies don't improve,
and applies early stopping.
6. If config.test is True, runs a final evaluation on the dataset and print
final results!
'''
def main():
with open(config.configFile(), "a+") as outFile:
json.dump(vars(config), outFile)
# set gpus
if config.gpus != "":
config.gpusNum = len(config.gpus.split(","))
os.environ["CUDA_VISIBLE_DEVICES"] = config.gpus
tf.logging.set_verbosity(tf.logging.ERROR)
# process data
print(bold("Preprocess data..."))
start = time.time()
preprocessor = Preprocesser()
data, embeddings, answerDict = preprocessor.preprocessData()
print("took {} seconds".format(bcolored("{:.2f}".format(time.time() - start), "blue")))
# build model
print(bold("Building model..."))
start = time.time()
model = MACnet(embeddings, answerDict)
print("took {} seconds".format(bcolored("{:.2f}".format(time.time() - start), "blue")))
# initializer
init = tf.global_variables_initializer()
# savers
savers = setSavers(model)
saver, emaSaver = savers["saver"], savers["emaSaver"]
# sessionConfig
sessionConfig = setSession()
with tf.Session(config = sessionConfig) as sess:
# ensure no more ops are added after model is built
sess.graph.finalize()
# restore / initialize weights, initialize epoch variable
epoch = loadWeights(sess, saver, init)
if config.train:
start0 = time.time()
bestEpoch = epoch
bestRes = None
prevRes = None
# epoch in [restored + 1, epochs]
for epoch in range(config.restoreEpoch + 1, config.epochs + 1):
print(bcolored("Training epoch {}...".format(epoch), "green"))
start = time.time()
# train
# calle = lambda: model.runEpoch(), collectRuntimeStats, writer
trainingData, alterData = chooseTrainingData(data)
trainRes = runEpoch(sess, model, trainingData, train = True, epoch = epoch,
saver = saver, alterData = alterData)
# save weights
saver.save(sess, config.weightsFile(epoch))
if config.saveSubset:
subsetSaver.save(sess, config.subsetWeightsFile(epoch))
# load EMA weights
if config.useEMA:
print(bold("Restoring EMA weights"))
emaSaver.restore(sess, config.weightsFile(epoch))
# evaluation
evalRes = runEvaluation(sess, model, data["main"], epoch)
extraEvalRes = runEvaluation(sess, model, data["extra"], epoch,
evalTrain = not config.extraVal)
# restore standard weights
if config.useEMA:
print(bold("Restoring standard weights"))
saver.restore(sess, config.weightsFile(epoch))
print("")
epochTime = time.time() - start
print("took {:.2f} seconds".format(epochTime))
# print results
printDatasetResults(trainRes, evalRes, extraEvalRes)
# stores predictions and optionally attention maps
if config.getPreds:
print(bcolored("Writing predictions...", "white"))
writePreds(preprocessor, evalRes, extraEvalRes)
logRecord(epoch, epochTime, config.lr, trainRes, evalRes, extraEvalRes)
# update best result
# compute curr and prior
currRes = {"train": trainRes, "val": evalRes["val"]}
curr = {"res": currRes, "epoch": epoch}
if bestRes is None or better(currRes, bestRes):
bestRes = currRes
bestEpoch = epoch
prior = {"best": {"res": bestRes, "epoch": bestEpoch},
"prev": {"res": prevRes, "epoch": epoch - 1}}
# lr reducing
if config.lrReduce:
if not improveEnough(curr, prior, config.lr):
config.lr *= config.lrDecayRate
print(colored("Reducing LR to {}".format(config.lr), "red"))
# early stopping
if config.earlyStopping > 0:
if epoch - bestEpoch > config.earlyStopping:
break
# update previous result
prevRes = currRes
# reduce epoch back to the last one we trained on
epoch -= 1
print("Training took {:.2f} seconds ({:} epochs)".format(time.time() - start0,
epoch - config.restoreEpoch))
if config.finalTest:
print("Testing on epoch {}...".format(epoch))
start = time.time()
if epoch > 0:
if config.useEMA:
emaSaver.restore(sess, config.weightsFile(epoch))
else:
saver.restore(sess, config.weightsFile(epoch))
evalRes = runEvaluation(sess, model, data["main"], epoch, evalTest = True)
extraEvalRes = runEvaluation(sess, model, data["extra"], epoch,
evalTrain = not config.extraVal, evalTest = True)
print("took {:.2f} seconds".format(time.time() - start))
printDatasetResults(None, evalRes, extraEvalRes)
print("Writing predictions...")
writePreds(preprocessor, evalRes, extraEvalRes)
print(bcolored("Done!","white"))
if __name__ == '__main__':
parseArgs()
loadDatasetConfig[config.dataset]()
main()