-
-
Notifications
You must be signed in to change notification settings - Fork 62
/
fit-method-draws.Rd
127 lines (113 loc) · 5 KB
/
fit-method-draws.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/fit.R
\name{fit-method-draws}
\alias{fit-method-draws}
\alias{draws}
\title{Extract posterior draws}
\usage{
draws(
variables = NULL,
inc_warmup = FALSE,
format = getOption("cmdstanr_draws_format")
)
}
\arguments{
\item{variables}{(character vector) Optionally, the names of the variables
(parameters, transformed parameters, and generated quantities) to read in.
\itemize{
\item If \code{NULL} (the default) then all variables are included.
\item If an empty string (\code{variables=""}) then none are included.
\item For non-scalar variables all elements or specific elements can be selected:
\itemize{
\item \code{variables = "theta"} selects all elements of \code{theta};
\item \code{variables = c("theta[1]", "theta[3]")} selects only the 1st and 3rd elements.
}
}}
\item{inc_warmup}{(logical) Should warmup draws be included? Defaults to
\code{FALSE}. Ignored except when used with \link{CmdStanMCMC} objects.}
\item{format}{(string) The format of the returned draws or point estimates.
Must be a valid format from the \pkg{posterior} package. The defaults
are the following.
\itemize{
\item For sampling and generated quantities the default is
\code{\link[posterior:draws_array]{"draws_array"}}. This format keeps the chains
separate. To combine the chains use any of the other formats (e.g.
\code{"draws_matrix"}).
\item For point estimates from optimization and approximate draws from
variational inference the default is
\code{\link[posterior:draws_array]{"draws_matrix"}}.
}
To use a different format it can be specified as the full name of the
format from the \pkg{posterior} package (e.g. \code{format = "draws_df"}) or
omitting the \code{"draws_"} prefix (e.g. \code{format = "df"}).
\strong{Changing the default format}: To change the default format for an entire
R session use \code{options(cmdstanr_draws_format = format)}, where \code{format} is
the name (in quotes) of a valid format from the posterior package. For
example \code{options(cmdstanr_draws_format = "draws_df")} will change the
default to a data frame.
\strong{Note about efficiency}: For models with a large number of parameters
(20k+) we recommend using the \code{"draws_list"} format, which is the most
efficient and RAM friendly when combining draws from multiple chains. If
speed or memory is not a constraint we recommend selecting the format that
most suits the coding style of the post processing phase.}
}
\value{
Depends on the value of \code{format}. The defaults are:
\itemize{
\item For \link[=model-method-sample]{MCMC}, a 3-D
\code{\link[posterior:draws_array]{draws_array}} object (iteration x chain x
variable).
\item For standalone \link[=model-method-generate-quantities]{generated quantities}, a
3-D \code{\link[posterior:draws_array]{draws_array}} object (iteration x chain x
variable).
\item For \link[=model-method-variational]{variational inference}, a 2-D
\code{\link[posterior:draws_matrix]{draws_matrix}} object (draw x variable) because
there are no chains. An additional variable \code{lp_approx__} is also included,
which is the log density of the variational approximation to the posterior
evaluated at each of the draws.
\item For \link[=model-method-optimize]{optimization}, a 1-row
\code{\link[posterior:draws_matrix]{draws_matrix}} with one column per variable. These
are \emph{not} actually draws, just point estimates stored in the \code{draws_matrix}
format. See \code{\link[=fit-method-mle]{$mle()}} to extract them as a numeric vector.
}
}
\description{
Extract posterior draws after MCMC or approximate posterior
draws after variational approximation using formats provided by the
\pkg{posterior} package.
The variables include the parameters, transformed parameters, and
generated quantities from the Stan program as well as \code{lp__}, the total
log probability (\code{target}) accumulated in the model block.
}
\examples{
\dontrun{
# logistic regression with intercept alpha and coefficients beta
fit <- cmdstanr_example("logistic", method = "sample")
# returned as 3-D array (see ?posterior::draws_array)
draws <- fit$draws()
dim(draws)
str(draws)
# can easily convert to other formats (data frame, matrix, list)
# using the posterior package
head(posterior::as_draws_matrix(draws))
# or can specify 'format' argument to avoid manual conversion
# matrix format combines all chains
draws <- fit$draws(format = "matrix")
head(draws)
# can select specific parameters
fit$draws("alpha")
fit$draws("beta") # selects entire vector beta
fit$draws(c("alpha", "beta[2]"))
# can be passed directly to bayesplot plotting functions
bayesplot::color_scheme_set("brightblue")
bayesplot::mcmc_dens(fit$draws(c("alpha", "beta")))
bayesplot::mcmc_scatter(fit$draws(c("beta[1]", "beta[2]")), alpha = 0.3)
# example using variational inference
fit <- cmdstanr_example("logistic", method = "variational")
head(fit$draws("beta")) # a matrix by default
head(fit$draws("beta", format = "df"))
}
}
\seealso{
\code{\link{CmdStanMCMC}}, \code{\link{CmdStanMLE}}, \code{\link{CmdStanVB}}, \code{\link{CmdStanGQ}}
}