forked from plclub/metalib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Fsub_LetSum_Lemmas.v
420 lines (369 loc) · 12.9 KB
/
Fsub_LetSum_Lemmas.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
(** Administrative lemmas for Fsub.
Authors: Brian Aydemir and Arthur Chargu\'eraud, with help from
Aaron Bohannon, Jeffrey Vaughan, and Dimitrios Vytiniotis.
This file contains a number of administrative lemmas that we
require for proving type-safety. The lemmas mainly concern the
relations [wf_typ] and [wf_env].
This file also contains regularity lemmas, which show that various
relations hold only for locally closed terms. In addition to
being necessary to complete the proof of type-safety, these lemmas
help demonstrate that our definitions are correct; they would be
worth proving even if they are unneeded for any "real" proofs.
Table of contents:
- #<a href="##wft">Properties of wf_typ</a>#
- #<a href="##oktwft">Properties of wf_env and wf_typ</a>#
- #<a href="##okt">Properties of wf_env</a>#
- #<a href="##subst">Properties of substitution</a>#
- #<a href="##regularity">Regularity lemmas</a>#
- #<a href="##auto">Automation</a># *)
Require Export Fsub_LetSum_Infrastructure.
(* ********************************************************************** *)
(** * #<a name="wft"></a># Properties of [wf_typ] *)
(** If a type is well-formed in an environment, then it is locally
closed. *)
Lemma type_from_wf_typ : forall E T,
wf_typ E T -> type T.
Proof.
intros E T H; induction H; eauto.
Qed.
(** The remaining properties are analogous to the properties that we
need to show for the subtyping and typing relations. *)
Lemma wf_typ_weakening : forall T E F G,
wf_typ (G ++ E) T ->
uniq (G ++ F ++ E) ->
wf_typ (G ++ F ++ E) T.
Proof with simpl_env; eauto.
intros T E F G Hwf_typ Hk.
remember (G ++ E) as F'.
generalize dependent G.
induction Hwf_typ; intros G Hok Heq; subst...
Case "type_all".
pick fresh Y and apply wf_typ_all...
rewrite <- app_assoc.
apply H0...
Qed.
Lemma wf_typ_weaken_head : forall T E F,
wf_typ E T ->
uniq (F ++ E) ->
wf_typ (F ++ E) T.
Proof.
intros.
rewrite_env (empty ++ F++ E).
auto using wf_typ_weakening.
Qed.
Lemma wf_typ_narrowing : forall V U T E F X,
wf_typ (F ++ X ~ bind_sub V ++ E) T ->
wf_typ (F ++ X ~ bind_sub U ++ E) T.
Proof with simpl_env; eauto.
intros V U T E F X Hwf_typ.
remember (F ++ X ~ bind_sub V ++ E) as G.
generalize dependent F.
induction Hwf_typ; intros F Heq; subst...
Case "wf_typ_var".
analyze_binds H...
Case "typ_all".
pick fresh Y and apply wf_typ_all...
rewrite <- app_assoc.
apply H0...
Qed.
Lemma wf_typ_strengthening : forall E F x U T,
wf_typ (F ++ x ~ bind_typ U ++ E) T ->
wf_typ (F ++ E) T.
Proof with simpl_env; eauto.
intros E F x U T H.
remember (F ++ x ~ bind_typ U ++ E) as G.
generalize dependent F.
induction H; intros F Heq; subst...
Case "wf_typ_var".
analyze_binds H...
Case "wf_typ_all".
pick fresh Y and apply wf_typ_all...
rewrite <- app_assoc.
apply H1...
Qed.
Lemma wf_typ_subst_tb : forall F Q E Z P T,
wf_typ (F ++ Z ~ bind_sub Q ++ E) T ->
wf_typ E P ->
uniq (map (subst_tb Z P) F ++ E) ->
wf_typ (map (subst_tb Z P) F ++ E) (subst_tt Z P T).
Proof with simpl_env; eauto using wf_typ_weaken_head, type_from_wf_typ.
intros F Q E Z P T WT WP.
remember (F ++ Z ~ bind_sub Q ++ E) as G.
generalize dependent F.
induction WT; intros F EQ Ok; subst; simpl subst_tt...
Case "wf_typ_var".
destruct (X == Z); subst...
SCase "X <> Z".
analyze_binds H...
apply (wf_typ_var (subst_tt Z P U))...
Case "wf_typ_all".
pick fresh Y and apply wf_typ_all...
rewrite subst_tt_open_tt_var...
rewrite_env (map (subst_tb Z P) (Y ~ bind_sub T1 ++ F) ++ E).
apply H0...
Qed.
Lemma wf_typ_open : forall E U T1 T2,
uniq E ->
wf_typ E (typ_all T1 T2) ->
wf_typ E U ->
wf_typ E (open_tt T2 U).
Proof with simpl_env; eauto.
intros E U T1 T2 Ok WA WU.
inversion WA; subst.
pick fresh X.
rewrite (subst_tt_intro X)...
rewrite_env (map (subst_tb X U) empty ++ E).
eapply wf_typ_subst_tb...
Qed.
(* ********************************************************************** *)
(** * #<a name="oktwft"></a># Properties of [wf_env] and [wf_typ] *)
Lemma uniq_from_wf_env : forall E,
wf_env E ->
uniq E.
Proof.
intros E H; induction H; auto.
Qed.
(** We add [uniq_from_wf_env] as a hint here since it helps blur the
distinction between [wf_env] and [uniq] in proofs. The lemmas in
the MetatheoryEnv library use [uniq], whereas here we naturally
have (or can easily show) the stronger [wf_env]. Thus,
[uniq_from_wf_env] serves as a bridge that allows us to use the
environments library. *)
Hint Resolve uniq_from_wf_env.
Lemma wf_typ_from_binds_typ : forall x U E,
wf_env E ->
binds x (bind_typ U) E ->
wf_typ E U.
Proof with auto using wf_typ_weaken_head.
induction 1; intros J; analyze_binds J...
injection BindsTacVal; intros; subst...
Qed.
Lemma wf_typ_from_wf_env_typ : forall x T E,
wf_env (x ~ bind_typ T ++ E) ->
wf_typ E T.
Proof.
intros x T E H. inversion H; auto.
Qed.
Lemma wf_typ_from_wf_env_sub : forall x T E,
wf_env (x ~ bind_sub T ++ E) ->
wf_typ E T.
Proof.
intros x T E H. inversion H; auto.
Qed.
(* ********************************************************************** *)
(** * #<a name="okt"></a># Properties of [wf_env] *)
(** These properties are analogous to the properties that we need to
show for the subtyping and typing relations. *)
Lemma wf_env_narrowing : forall V E F U X,
wf_env (F ++ X ~ bind_sub V ++ E) ->
wf_typ E U ->
wf_env (F ++ X ~ bind_sub U ++ E).
Proof with eauto using wf_typ_narrowing.
induction F; intros U X Wf_env Wf;
inversion Wf_env; subst; simpl_env in *...
Qed.
Lemma wf_env_strengthening : forall x T E F,
wf_env (F ++ x ~ bind_typ T ++ E) ->
wf_env (F ++ E).
Proof with eauto using wf_typ_strengthening.
induction F; intros Wf_env; inversion Wf_env; subst; simpl_env in *...
Qed.
Lemma wf_env_subst_tb : forall Q Z P E F,
wf_env (F ++ Z ~ bind_sub Q ++ E) ->
wf_typ E P ->
wf_env (map (subst_tb Z P) F ++ E).
Proof with eauto 6 using wf_typ_subst_tb.
induction F; intros Wf_env WP; simpl_env;
inversion Wf_env; simpl_env in *; simpl subst_tb...
Qed.
(* ********************************************************************** *)
(** * #<a name="subst"></a># Environment is unchanged by substitution for a fresh name *)
Lemma notin_fv_tt_open : forall (Y X : atom) T,
X `notin` fv_tt (open_tt T Y) ->
X `notin` fv_tt T.
Proof.
intros Y X T. unfold open_tt.
generalize 0.
induction T; simpl; intros k Fr; eauto.
Qed.
Lemma notin_fv_wf : forall E (X : atom) T,
wf_typ E T ->
X `notin` dom E ->
X `notin` fv_tt T.
Proof with auto.
intros E X T Wf_typ.
induction Wf_typ; intros Fr; simpl...
Case "wf_typ_var".
assert (X0 `in` (dom E))...
eapply binds_In; eauto. fsetdec.
Case "wf_typ_all".
apply notin_union...
pick fresh Y.
apply (notin_fv_tt_open Y)...
Qed.
Lemma map_subst_tb_id : forall G Z P,
wf_env G ->
Z `notin` dom G ->
G = map (subst_tb Z P) G.
Proof with auto.
intros G Z P H.
induction H; simpl; intros Fr; simpl_env...
rewrite <- IHwf_env...
rewrite <- subst_tt_fresh... eapply notin_fv_wf; eauto.
rewrite <- IHwf_env...
rewrite <- subst_tt_fresh... eapply notin_fv_wf; eauto.
Qed.
(* ********************************************************************** *)
(** * #<a name="regularity"></a># Regularity of relations *)
Lemma sub_regular : forall E S T,
sub E S T ->
wf_env E /\ wf_typ E S /\ wf_typ E T.
Proof with simpl_env; try solve [auto | intuition auto].
intros E S T H.
induction H...
Case "sub_trans_tvar".
intuition eauto.
Case "sub_all".
repeat split...
SCase "Second of original three conjuncts".
pick fresh Y and apply wf_typ_all...
destruct (H1 Y)...
rewrite_env (empty ++ Y ~ bind_sub S1 ++ E).
apply (wf_typ_narrowing T1)...
SCase "Third of original three conjuncts".
pick fresh Y and apply wf_typ_all...
destruct (H1 Y)...
Qed.
Lemma typing_regular : forall E e T,
typing E e T ->
wf_env E /\ expr e /\ wf_typ E T.
Proof with simpl_env; try solve [auto | intuition auto].
intros E e T H; induction H...
Case "typing_var".
repeat split...
eauto using wf_typ_from_binds_typ.
Case "typing_abs".
pick fresh y.
destruct (H0 y) as [Hok [J K]]...
repeat split. inversion Hok...
SCase "Second of original three conjuncts".
pick fresh x and apply expr_abs.
eauto using type_from_wf_typ, wf_typ_from_wf_env_typ.
destruct (H0 x)...
SCase "Third of original three conjuncts".
apply wf_typ_arrow; eauto using wf_typ_from_wf_env_typ.
rewrite_env (empty ++ E).
eapply wf_typ_strengthening; simpl_env; eauto.
Case "typing_app".
repeat split...
destruct IHtyping1 as [_ [_ K]].
inversion K...
Case "typing_tabs".
pick fresh Y.
destruct (H0 Y) as [Hok [J K]]...
inversion Hok; subst.
repeat split...
SCase "Second of original three conjuncts".
pick fresh X and apply expr_tabs.
eauto using type_from_wf_typ, wf_typ_from_wf_env_sub...
destruct (H0 X)...
SCase "Third of original three conjuncts".
pick fresh Z and apply wf_typ_all...
destruct (H0 Z)...
Case "typing_tapp".
destruct (sub_regular _ _ _ H0) as [R1 [R2 R3]].
repeat split...
SCase "Second of original three conjuncts".
apply expr_tapp...
eauto using type_from_wf_typ.
SCase "Third of original three conjuncts".
destruct IHtyping as [R1' [R2' R3']].
eapply wf_typ_open; eauto.
Case "typing_sub".
repeat split...
destruct (sub_regular _ _ _ H0)...
Case "typing_let".
repeat split...
SCase "Second of original three conjuncts".
pick fresh y and apply expr_let...
destruct (H1 y) as [K1 [K2 K3]]...
SCase "Third of original three conjuncts".
pick fresh y.
destruct (H1 y) as [K1 [K2 K3]]...
rewrite_env (empty ++ E).
eapply wf_typ_strengthening; simpl_env; eauto.
Case "typing_case".
repeat split...
SCase "Second of original three conjuncts".
pick fresh x and apply expr_case...
destruct (H1 x) as [? [? ?]]...
destruct (H3 x) as [? [? ?]]...
SCase "Third of original three conjuncts".
pick fresh y.
destruct (H1 y) as [K1 [K2 K3]]...
rewrite_env (empty ++ E).
eapply wf_typ_strengthening; simpl_env; eauto.
Qed.
Lemma value_regular : forall e,
value e ->
expr e.
Proof.
intros e H. induction H; auto.
Qed.
Lemma red_regular : forall e e',
red e e' ->
expr e /\ expr e'.
Proof with try solve [auto | intuition auto].
intros e e' H.
induction H; assert(J := value_regular); split...
Case "red_abs".
inversion H. pick fresh y. rewrite (subst_ee_intro y)...
Case "red_tabs".
inversion H. pick fresh Y. rewrite (subst_te_intro Y)...
Qed.
(* *********************************************************************** *)
(** * #<a name="auto"></a># Automation *)
(** The lemma [uniq_from_wf_env] was already added above as a hint
since it helps blur the distinction between [wf_env] and [uniq] in
proofs.
As currently stated, the regularity lemmas are ill-suited to be
used with [auto] and [eauto] since they end in conjunctions. Even
if we were, for example, to split [sub_regularity] into three
separate lemmas, the resulting lemmas would be usable only by
[eauto] and there is no guarantee that [eauto] would be able to
find proofs effectively. Thus, the hints below apply the
regularity lemmas and [type_from_wf_typ] to discharge goals about
local closure and well-formedness, but in such a way as to
minimize proof search.
The first hint introduces an [wf_env] fact into the context. It
works well when combined with the lemmas relating [wf_env] and
[wf_typ]. We choose to use those lemmas explicitly via [(auto
using ...)] tactics rather than add them as hints. When used this
way, the explicitness makes the proof more informative rather than
more cluttered (with useless details).
The other three hints try outright to solve their respective
goals. *)
Hint Extern 1 (wf_env ?E) =>
match goal with
| H: sub _ _ _ |- _ => apply (proj1 (sub_regular _ _ _ H))
| H: typing _ _ _ |- _ => apply (proj1 (typing_regular _ _ _ H))
end.
Hint Extern 1 (wf_typ ?E ?T) =>
match goal with
| H: typing E _ T |- _ => apply (proj2 (proj2 (typing_regular _ _ _ H)))
| H: sub E T _ |- _ => apply (proj1 (proj2 (sub_regular _ _ _ H)))
| H: sub E _ T |- _ => apply (proj2 (proj2 (sub_regular _ _ _ H)))
end.
Hint Extern 1 (type ?T) =>
let go E := apply (type_from_wf_typ E); auto in
match goal with
| H: typing ?E _ T |- _ => go E
| H: sub ?E T _ |- _ => go E
| H: sub ?E _ T |- _ => go E
end.
Hint Extern 1 (expr ?e) =>
match goal with
| H: typing _ ?e _ |- _ => apply (proj1 (proj2 (typing_regular _ _ _ H)))
| H: red ?e _ |- _ => apply (proj1 (red_regular _ _ H))
| H: red _ ?e |- _ => apply (proj2 (red_regular _ _ H))
end.