Skip to content

Latest commit

 

History

History
51 lines (40 loc) · 1.78 KB

README.md

File metadata and controls

51 lines (40 loc) · 1.78 KB

Pointnet2.PyTorch

Installation

Requirements

  • Linux (tested on Ubuntu 14.04/16.04)
  • Python 3.6+
  • PyTorch 1.0

Install

Install this library by running the following command:

cd pointnet2
python setup.py install
cd ../

Examples

Here I provide a simple example to use this library in the task of KITTI ourdoor foreground point cloud segmentation, and you could refer to the paper PointRCNN for the details of task description and foreground label generation.

  1. Download the training data from KITTI 3D object detection website and organize the downloaded files as follows:
Pointnet2.PyTorch
├── pointnet2
├── tools
│   ├──data
│   │  ├── KITTI
│   │  │   ├── ImageSets
│   │  │   ├── object
│   │  │   │   ├──training
│   │  │   │      ├──calib & velodyne & label_2 & image_2
│   │  train_and_eval.py
  1. Run the following command to train and evaluate:
cd tools
python train_and_eval.py --batch_size 8 --epochs 100 --ckpt_save_interval 2 

Project using this repo:

  • PointRCNN: 3D object detector from raw point cloud.

Acknowledgement