forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_e2e_correctness.py
100 lines (86 loc) · 3.53 KB
/
test_e2e_correctness.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
"""E2E tests to verify the correctness of the encoder-decoder framework
Run `pytest tests/encoder_decoder/test_e2e_correctness.py`.
"""
from typing import List, Optional, Tuple
from vllm.utils import is_cpu
if not is_cpu():
# CPU backend is not currently supported with encoder/decoder models
# skip test definitions entirely to avoid importing GPU kernel libs
# (xFormers, etc.)
import pytest
from transformers import AutoModelForSeq2SeqLM
from vllm.sequence import SampleLogprobs
from ..conftest import DecoderPromptType
from ..models.utils import check_logprobs_close
def vllm_to_hf_output(
vllm_output: Tuple[List[int], str, Optional[SampleLogprobs]],
decoder_prompt_type: DecoderPromptType,
):
"""Sanitize vllm output to be comparable with hf output."""
output_ids, output_str, out_logprobs = vllm_output
hf_output_str = output_str + "</s>"
if decoder_prompt_type == DecoderPromptType.NONE:
hf_output_str = "<s>" + hf_output_str
return output_ids, hf_output_str, out_logprobs
@pytest.mark.parametrize("model", ["facebook/bart-large-cnn"])
@pytest.mark.parametrize("dtype", ["bfloat16"])
@pytest.mark.parametrize("max_tokens", [128])
@pytest.mark.parametrize("num_logprobs", [5])
@pytest.mark.parametrize("decoder_prompt_type", list(DecoderPromptType))
@pytest.mark.parametrize("enforce_eager", [True, False])
def test_encoder_decoder_e2e(
hf_runner,
vllm_runner,
example_encoder_decoder_prompts,
model: str,
dtype: str,
max_tokens: int,
num_logprobs: int,
decoder_prompt_type: DecoderPromptType,
enforce_eager: bool,
) -> None:
'''
End-to-End (E2E) test for the encoder-decoder framework.
This test evaluates the encoder-decoder functionality using the BART
model. We compare the outputs of the Hugging Face and vLLM
implementations to ensure that both implementations produce consistent
and correct results.
'''
test_case_prompts = example_encoder_decoder_prompts[
decoder_prompt_type]
# Configuration settings for HF baseline
hf_kwargs = {
"top_k": None,
"num_beams": 1,
"repetition_penalty": 1.0,
"top_p": 1.0,
"length_penalty": 1.0,
"early_stopping": False,
"no_repeat_ngram_size": None,
"min_length": 0
}
with hf_runner(model, dtype=dtype,
auto_cls=AutoModelForSeq2SeqLM) as hf_model:
hf_outputs = (
hf_model.generate_encoder_decoder_greedy_logprobs_limit(
test_case_prompts,
max_tokens,
num_logprobs,
**hf_kwargs,
))
with vllm_runner(model, dtype=dtype,
enforce_eager=enforce_eager) as vllm_model:
vllm_outputs = vllm_model.generate_encoder_decoder_greedy_logprobs(
test_case_prompts, max_tokens, num_logprobs)
hf_skip_tokens = (1 if decoder_prompt_type == DecoderPromptType.NONE
else 0)
check_logprobs_close(
outputs_0_lst=hf_outputs,
outputs_1_lst=[
vllm_to_hf_output(vllm_output, decoder_prompt_type)
for vllm_output in vllm_outputs
],
name_0="hf",
name_1="vllm",
num_outputs_0_skip_tokens=hf_skip_tokens,
)