forked from facebookresearch/detr
-
Notifications
You must be signed in to change notification settings - Fork 1
/
test.py
236 lines (189 loc) · 8.99 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Train and eval functions used in main.py
"""
import math
import os
import cv2
import sys
import argparse
from pathlib import Path
from typing import Iterable
from PIL import Image
import numpy as np
from PIL import ImageDraw
import torch
import util.misc as utils
from models import build_model
from datasets.tables import make_Table_transforms
import matplotlib.pyplot as plt
import time
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
(x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=1)
def rescale_bboxes(out_bbox, size):
img_w, img_h = size
b = box_cxcywh_to_xyxy(out_bbox)
b = b * torch.tensor([img_w, img_h,
img_w, img_h
], dtype=torch.float32)
return b
def get_images(in_path):
img_files = []
for (dirpath, dirnames, filenames) in os.walk(in_path):
for file in filenames:
filename, ext = os.path.splitext(file)
ext = str.lower(ext)
if ext == '.jpg' or ext == '.jpeg' or ext == '.gif' or ext == '.png' or ext == '.pgm':
img_files.append(os.path.join(dirpath, file))
return img_files
def get_args_parser():
parser = argparse.ArgumentParser('Set transformer detector', add_help=False)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_backbone', default=1e-5, type=float)
parser.add_argument('--batch_size', default=6, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=300, type=int)
parser.add_argument('--lr_drop', default=200, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
# Model parameters
parser.add_argument('--frozen_weights', type=str, default=None,
help="Path to the pretrained model. If set, only the mask head will be trained")
# * Backbone
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--dilation', action='store_true',
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
# * Transformer
parser.add_argument('--enc_layers', default=6, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=6, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_queries', default=10, type=int,
help="Number of query slots")
parser.add_argument('--pre_norm', action='store_true')
# * Segmentation
parser.add_argument('--masks', action='store_true',
help="Train segmentation head if the flag is provided")
# # Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
# * Matcher
parser.add_argument('--set_cost_class', default=1, type=float,
help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_bbox', default=5, type=float,
help="L1 box coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=2, type=float,
help="giou box coefficient in the matching cost")
# * Loss coefficients
parser.add_argument('--mask_loss_coef', default=1, type=float)
parser.add_argument('--dice_loss_coef', default=1, type=float)
parser.add_argument('--bbox_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=2, type=float)
parser.add_argument('--eos_coef', default=0.1, type=float,
help="Relative classification weight of the no-object class")
# dataset parameters
parser.add_argument('--dataset_file', default='face')
parser.add_argument('--data_path', type=str)
parser.add_argument('--data_panoptic_path', type=str)
parser.add_argument('--remove_difficult', action='store_true')
parser.add_argument('--output_dir', default='',
help='path where to save the results, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--thresh', default=0.5, type=float)
return parser
@torch.no_grad()
def infer(images_path, model, postprocessors, device, output_path):
model.eval()
duration = 0
for img_sample in images_path:
filename = os.path.basename(img_sample)
orig_image = Image.open(img_sample)
w, h = orig_image.size
transform = make_Table_transforms("val")
dummy_target = {
"size": torch.as_tensor([int(h), int(w)]),
"orig_size": torch.as_tensor([int(h), int(w)])
}
image, targets = transform(orig_image, dummy_target)
image = image.unsqueeze(0)
image = image.to(device)
conv_features, enc_attn_weights, dec_attn_weights = [], [], []
hooks = [
model.backbone[-2].register_forward_hook(
lambda self, input, output: conv_features.append(output)
),
model.transformer.encoder.layers[-1].self_attn.register_forward_hook(
lambda self, input, output: enc_attn_weights.append(output[1])
),
model.transformer.decoder.layers[-1].multihead_attn.register_forward_hook(
lambda self, input, output: dec_attn_weights.append(output[1])
),
]
start_t = time.perf_counter()
outputs = model(image)
end_t = time.perf_counter()
outputs["pred_logits"] = outputs["pred_logits"].cpu()
outputs["pred_boxes"] = outputs["pred_boxes"].cpu()
probas = outputs['pred_logits'].softmax(-1)[0, :, :-1]
# keep = probas.max(-1).values > 0.85
keep = probas.max(-1).values > args.thresh
bboxes_scaled = rescale_bboxes(outputs['pred_boxes'][0, keep], orig_image.size)
probas = probas[keep].cpu().data.numpy()
for hook in hooks:
hook.remove()
conv_features = conv_features[0]
enc_attn_weights = enc_attn_weights[0]
dec_attn_weights = dec_attn_weights[0].cpu()
# get the feature map shape
h, w = conv_features['0'].tensors.shape[-2:]
if len(bboxes_scaled) == 0:
continue
img = np.array(orig_image)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
for idx, box in enumerate(bboxes_scaled):
bbox = box.cpu().data.numpy()
bbox = bbox.astype(np.int32)
bbox = np.array([
[bbox[0], bbox[1]],
[bbox[2], bbox[1]],
[bbox[2], bbox[3]],
[bbox[0], bbox[3]],
])
bbox = bbox.reshape((4, 2))
cv2.polylines(img, [bbox], True, (0, 255, 0), 1)
infer_time = end_t - start_t
duration += infer_time
img_save_path = os.path.join(output_path, filename)
cv2.imwrite(img_save_path, img)
print("Processed...{} in ({:.3f}s)".format(filename, infer_time))
avg_duration = duration / len(images_path)
print("Avg. Time: {:.3f}s".format(avg_duration))
if __name__ == "__main__":
parser = argparse.ArgumentParser('DETR training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
device = torch.device(args.device)
model, _, postprocessors = build_model(args)
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
model.load_state_dict(checkpoint['model'])
model.to(device)
image_paths = get_images(args.data_path)
infer(image_paths, model, postprocessors, device, args.output_dir)