-
Notifications
You must be signed in to change notification settings - Fork 0
/
chatbot.py
216 lines (162 loc) · 6.79 KB
/
chatbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import os
import openai
import requests
import telebot
import pickle
from langchain.vectorstores import FAISS as BaseFAISS
from dotenv import load_dotenv
from gtts import gTTS
from pydub import AudioSegment
from celery import Celery
import speech_recognition as sr
from langchain.embeddings import OpenAIEmbeddings
load_dotenv()
SYSTEM_PROMPT = os.getenv('SYSTEM_PROMPT')
app = Celery('chatbot', broker=os.getenv('CELERY_BROKER_URL'))
TELEGRAM_BOT_TOKEN = os.getenv('TELEGRAM_BOT_TOKEN')
bot = telebot.TeleBot(TELEGRAM_BOT_TOKEN)
OPENAI_API_KEY = os.getenv('OPEN_AI_KEY')
MODEL_NAME = os.getenv('MODEL_NAME')
embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
# Store the last 10 conversations for each user
conversations = {}
class FAISS(BaseFAISS):
@staticmethod
def load(file_path):
with open(file_path, "rb") as f:
return pickle.load(f)
# Load the FAISS index
faiss_obj_path = "models/" + MODEL_NAME + ".pickle"
faiss_index = FAISS.load(faiss_obj_path)
# @app.task
def generate_response_chat(message_list):
if faiss_index:
# Add extra text to the content of the last message
last_message = message_list[-1]
# Get the most similar documents to the last message
try:
docs = faiss_index.similarity_search(query=last_message["content"], k=2)
updated_content = last_message["content"] + "\n\n"
for doc in docs:
updated_content += doc.page_content + "\n\n"
except Exception as e:
print(f"Error while fetching : {e}")
updated_content = last_message["content"]
print(updated_content)
# Create a new HumanMessage object with the updated content
# updated_message = HumanMessage(content=updated_content)
updated_message = {"role": "user", "content": updated_content}
# Replace the last message in message_list with the updated message
message_list[-1] = updated_message
openai.api_key = OPENAI_API_KEY
# Send request to GPT-3 (replace with actual GPT-3 API call)
gpt3_response = openai.ChatCompletion.create(
model="gpt-4",
temperature=0,
messages=[
{"role": "system",
"content": SYSTEM_PROMPT},
] + message_list
)
assistant_response = gpt3_response["choices"][0]["message"]["content"].strip()
return assistant_response
def conversation_tracking(text_message, user_id):
"""
Make remember all the conversation
:param old_model: Open AI model
:param user_id: telegram user id
:param text_message: text message
:return: str
"""
# Get the last 10 conversations and responses for this user
user_conversations = conversations.get(user_id, {'conversations': [], 'responses': []})
user_messages = user_conversations['conversations'][-9:] + [text_message]
user_responses = user_conversations['responses'][-9:]
# Store the updated conversations and responses for this user
conversations[user_id] = {'conversations': user_messages, 'responses': user_responses}
# Construct the full conversation history in the user:assistant, " format
conversation_history = []
for i in range(min(len(user_messages), len(user_responses))):
conversation_history.append({
"role": "user", "content": user_messages[i]
})
conversation_history.append({
"role": "assistant", "content": user_responses[i]
})
# Add last prompt
conversation_history.append({
"role": "user", "content": text_message
})
# Generate response
response = generate_response_chat(conversation_history)
# task = generate_response_chat.apply_async(args=[conversation_history])
# response = task.get()
# Add the response to the user's responses
user_responses.append(response)
# Store the updated conversations and responses for this user
conversations[user_id] = {'conversations': user_messages, 'responses': user_responses}
return response
@bot.message_handler(commands=["start", "help"])
def start(message):
if message.text.startswith("/help"):
bot.reply_to(message, "/clear - Clears old "
"conversations\nsend text to get replay\nsend voice to do voice"
"conversation")
else:
bot.reply_to(message, "Just start chatting to the AI or enter /help for other commands")
# Define a function to handle voice messages
@bot.message_handler(content_types=["voice"])
def handle_voice(message):
user_id = message.chat.id
# Download the voice message file from Telegram servers
file_info = bot.get_file(message.voice.file_id)
file = requests.get("https://api.telegram.org/file/bot{0}/{1}".format(
TELEGRAM_BOT_TOKEN, file_info.file_path))
# Save the file to disk
with open("voice_message.ogg", "wb") as f:
f.write(file.content)
# Use pydub to read in the audio file and convert it to WAV format
sound = AudioSegment.from_file("voice_message.ogg", format="ogg")
sound.export("voice_message.wav", format="wav")
# Use SpeechRecognition to transcribe the voice message
r = sr.Recognizer()
with sr.AudioFile("voice_message.wav") as source:
audio_data = r.record(source)
text = r.recognize_google(audio_data)
# Generate response
replay_text = conversation_tracking(text, user_id)
# Send the question text back to the user
# Send the transcribed text back to the user
new_replay_text = "Human: " + text + "\n\n" + "sonic: " + replay_text
bot.reply_to(message, new_replay_text)
# Use Google Text-to-Speech to convert the text to speech
tts = gTTS(replay_text)
tts.save("voice_message.mp3")
# Use pydub to convert the MP3 file to the OGG format
sound = AudioSegment.from_mp3("voice_message.mp3")
sound.export("voice_message_replay.ogg", format="mp3")
# Send the transcribed text back to the user as a voice
voice = open("voice_message_replay.ogg", "rb")
bot.send_voice(message.chat.id, voice)
voice.close()
# Delete the temporary files
os.remove("voice_message.ogg")
os.remove("voice_message.wav")
os.remove("voice_message.mp3")
os.remove("voice_message_replay.ogg")
@bot.message_handler(func=lambda message: True)
def echo_message(message):
user_id = message.chat.id
# Handle /clear command
if message.text == '/clear':
conversations[user_id] = {'conversations': [], 'responses': []}
bot.reply_to(message, "Conversations and responses cleared!")
return
response = conversation_tracking(message.text, user_id)
# Reply to message
bot.reply_to(message, response)
if __name__ == "__main__":
print("Starting bot...")
print("Bot Started")
print("Press Ctrl + C to stop bot")
bot.polling()