-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathd4rl_train.py
176 lines (141 loc) · 5.11 KB
/
d4rl_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Copyright 2022 Spotify AB
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import numpy as np
import gym
import pybullet_envs
import os
import pickle
import argparse
from datetime import datetime
from d4rl_pybullet.sac import SAC, seed_everything
from utils import SimpleLogger
from d4rl_pybullet.utility import save_buffer
def update(buffer, sac, batch_size, train_actor=True):
obs_ts = []
act_ts = []
rew_tp1s = []
obs_tp1s = []
ter_tp1s = []
while len(obs_ts) != batch_size:
index = np.random.randint(len(buffer) - 1)
# skip if index indicates the terminal state
if buffer[index][3][0]:
continue
obs_ts.append(buffer[index][0])
act_ts.append(buffer[index][1])
rew_tp1s.append(buffer[index + 1][2])
obs_tp1s.append(buffer[index + 1][0])
ter_tp1s.append(buffer[index + 1][3])
critic_loss = sac.update_critic(obs_ts, act_ts, rew_tp1s, obs_tp1s, ter_tp1s)
if train_actor:
actor_loss = sac.update_actor(obs_ts)
else:
actor_loss = -1.0
temp_loss = sac.update_temp(obs_ts)
sac.update_target()
return critic_loss, actor_loss, temp_loss
def evaluate(env, sac, n_episodes=10):
episode_rews = []
for episode in range(n_episodes):
obs = env.reset()
ter = False
episode_rew = 0.0
while not ter:
act = sac.act([obs], deterministic=True)[0]
obs, rew, ter, _ = env.step(act)
episode_rew += rew
episode_rews.append(episode_rew)
return np.mean(episode_rews)
def train(
env,
eval_env,
sac,
logdir,
desired_level,
total_step,
buffer=[],
train_actor_threshold=None,
batch_size=100,
save_interval=10000,
eval_interval=10000,
recompute_reward=False,
reward_recompute_interval=10000,
eval2=False,
):
logger = SimpleLogger(logdir)
step = 0
buffer_il = []
while step <= total_step:
obs_t = env.reset()
ter_t = False
rew_t = 0.0
episode_rew = 0.0
while not ter_t and step <= total_step:
act_t = sac.act([obs_t])[0]
buffer.append([obs_t, act_t, [rew_t], [ter_t]])
buffer_il.append([obs_t, act_t, [rew_t], [ter_t]])
obs_t, rew_t, ter_t, _ = env.step(act_t)
episode_rew += rew_t
if len(buffer) > batch_size:
train_actor = (
step >= train_actor_threshold if train_actor_threshold else True
)
update(buffer, sac, batch_size, train_actor)
# if step % save_interval == 0:
# sac.save(os.path.join(logdir, 'model_%d.pt' % step))
if step % eval_interval == 0:
if eval2:
logger.add2(
"eval_reward",
step,
evaluate(eval_env, sac, n_episodes=100),
evaluate(env.clone(), sac, n_episodes=100),
)
else:
logger.add("eval_reward", step, evaluate(eval_env, sac))
step += 1
if recompute_reward and step % reward_recompute_interval == 0:
env.recompute_reward(buffer_il)
if ter_t:
buffer.append([obs_t, np.zeros_like(act_t), [rew_t], [ter_t]])
buffer_il.append([obs_t, np.zeros_like(act_t), [rew_t], [ter_t]])
logger.add("reward", step, episode_rew)
if desired_level is not None and episode_rew >= desired_level:
break
# save final buffer
# save_buffer(buffer, logdir)
# print('Final buffer has been saved.')
# save final parameters
# sac.save(os.path.join(logdir, 'final_model.pt'))
# print('Final model parameters have been saved.')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--env", type=str)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--desired-level", type=float)
parser.add_argument("--total-step", type=int, default=2000000)
parser.add_argument("--gpu", type=int)
args = parser.parse_args()
env = gym.make(args.env)
eval_env = gym.make(args.env)
env.seed(args.seed)
seed_everything(args.seed)
observation_size = env.observation_space.shape[0]
action_size = env.action_space.shape[0]
device = "cuda:%d" % args.gpu if args.gpu is not None else "cpu:0"
sac = SAC(observation_size, action_size, device)
logdir = os.path.join("logs", "{}_{}".format(args.env, args.seed))
os.makedirs(logdir)
train(env, eval_env, sac, logdir, args.desired_level, args.total_step)