-
Notifications
You must be signed in to change notification settings - Fork 191
/
Copy pathgs_external.py
302 lines (243 loc) · 13.7 KB
/
gs_external.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
"""
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file found here:
# https://github.com/graphdeco-inria/gaussian-splatting/blob/main/LICENSE.md
#
# For inquiries contact george.drettakis@inria.fr
#######################################################################################################################
##### NOTE: CODE IN THIS FILE IS NOT INCLUDED IN THE OVERALL PROJECT'S MIT LICENSE #####
##### USE OF THIS CODE FOLLOWS THE COPYRIGHT NOTICE ABOVE #####
#######################################################################################################################
"""
import numpy as np
import torch
import torch.nn.functional as func
from torch.autograd import Variable
from math import exp
def build_rotation(q):
norm = torch.sqrt(q[:, 0] * q[:, 0] + q[:, 1] * q[:, 1] + q[:, 2] * q[:, 2] + q[:, 3] * q[:, 3])
q = q / norm[:, None]
rot = torch.zeros((q.size(0), 3, 3), device='cuda')
r = q[:, 0]
x = q[:, 1]
y = q[:, 2]
z = q[:, 3]
rot[:, 0, 0] = 1 - 2 * (y * y + z * z)
rot[:, 0, 1] = 2 * (x * y - r * z)
rot[:, 0, 2] = 2 * (x * z + r * y)
rot[:, 1, 0] = 2 * (x * y + r * z)
rot[:, 1, 1] = 1 - 2 * (x * x + z * z)
rot[:, 1, 2] = 2 * (y * z - r * x)
rot[:, 2, 0] = 2 * (x * z - r * y)
rot[:, 2, 1] = 2 * (y * z + r * x)
rot[:, 2, 2] = 1 - 2 * (x * x + y * y)
return rot
def calc_mse(img1, img2):
return ((img1 - img2) ** 2).view(img1.shape[0], -1).mean(1, keepdim=True)
def calc_psnr(img1, img2):
mse = ((img1 - img2) ** 2).view(img1.shape[0], -1).mean(1, keepdim=True)
return 20 * torch.log10(1.0 / torch.sqrt(mse))
def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)])
return gauss / gauss.sum()
def create_window(window_size, channel):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
return window
def calc_ssim(img1, img2, window_size=11, size_average=True):
channel = img1.size(-3)
window = create_window(window_size, channel)
if img1.is_cuda:
window = window.cuda(img1.get_device())
window = window.type_as(img1)
return _ssim(img1, img2, window, window_size, channel, size_average)
def _ssim(img1, img2, window, window_size, channel, size_average=True):
mu1 = func.conv2d(img1, window, padding=window_size // 2, groups=channel)
mu2 = func.conv2d(img2, window, padding=window_size // 2, groups=channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = func.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq
sigma2_sq = func.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq
sigma12 = func.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2
c1 = 0.01 ** 2
c2 = 0.03 ** 2
ssim_map = ((2 * mu1_mu2 + c1) * (2 * sigma12 + c2)) / ((mu1_sq + mu2_sq + c1) * (sigma1_sq + sigma2_sq + c2))
if size_average:
return ssim_map.mean()
else:
return ssim_map.mean(1).mean(1).mean(1)
def accumulate_mean2d_gradient(variables):
variables['means2D_gradient_accum'][variables['seen']] += torch.norm(
variables['means2D'].grad[variables['seen'], :2], dim=-1)
variables['denom'][variables['seen']] += 1
return variables
def update_params_and_optimizer(new_params, params, optimizer):
for k, v in new_params.items():
group = [x for x in optimizer.param_groups if x["name"] == k][0]
stored_state = optimizer.state.get(group['params'][0], None)
stored_state["exp_avg"] = torch.zeros_like(v)
stored_state["exp_avg_sq"] = torch.zeros_like(v)
del optimizer.state[group['params'][0]]
group["params"][0] = torch.nn.Parameter(v.requires_grad_(True))
optimizer.state[group['params'][0]] = stored_state
params[k] = group["params"][0]
return params
def cat_params_to_optimizer(new_params, params, optimizer):
for k, v in new_params.items():
group = [g for g in optimizer.param_groups if g['name'] == k][0]
stored_state = optimizer.state.get(group['params'][0], None)
if stored_state is not None:
stored_state["exp_avg"] = torch.cat((stored_state["exp_avg"], torch.zeros_like(v)), dim=0)
stored_state["exp_avg_sq"] = torch.cat((stored_state["exp_avg_sq"], torch.zeros_like(v)), dim=0)
del optimizer.state[group['params'][0]]
group["params"][0] = torch.nn.Parameter(torch.cat((group["params"][0], v), dim=0).requires_grad_(True))
optimizer.state[group['params'][0]] = stored_state
params[k] = group["params"][0]
else:
group["params"][0] = torch.nn.Parameter(torch.cat((group["params"][0], v), dim=0).requires_grad_(True))
params[k] = group["params"][0]
return params
def remove_points(to_remove, params, variables, optimizer):
to_keep = ~to_remove
keys = [k for k in params.keys() if k not in ['cam_unnorm_rots', 'cam_trans']]
for k in keys:
group = [g for g in optimizer.param_groups if g['name'] == k][0]
stored_state = optimizer.state.get(group['params'][0], None)
if stored_state is not None:
stored_state["exp_avg"] = stored_state["exp_avg"][to_keep]
stored_state["exp_avg_sq"] = stored_state["exp_avg_sq"][to_keep]
del optimizer.state[group['params'][0]]
group["params"][0] = torch.nn.Parameter((group["params"][0][to_keep].requires_grad_(True)))
optimizer.state[group['params'][0]] = stored_state
params[k] = group["params"][0]
else:
group["params"][0] = torch.nn.Parameter(group["params"][0][to_keep].requires_grad_(True))
params[k] = group["params"][0]
variables['means2D_gradient_accum'] = variables['means2D_gradient_accum'][to_keep]
variables['denom'] = variables['denom'][to_keep]
variables['max_2D_radius'] = variables['max_2D_radius'][to_keep]
if 'timestep' in variables.keys():
variables['timestep'] = variables['timestep'][to_keep]
return params, variables
def inverse_sigmoid(x):
return torch.log(x / (1 - x))
def prune_gaussians(params, variables, optimizer, iter, prune_dict):
if iter <= prune_dict['stop_after']:
if (iter >= prune_dict['start_after']) and (iter % prune_dict['prune_every'] == 0):
if iter == prune_dict['stop_after']:
remove_threshold = prune_dict['final_removal_opacity_threshold']
else:
remove_threshold = prune_dict['removal_opacity_threshold']
# Remove Gaussians with low opacity
to_remove = (torch.sigmoid(params['logit_opacities']) < remove_threshold).squeeze()
# Remove Gaussians that are too big
if iter >= prune_dict['remove_big_after']:
big_points_ws = torch.exp(params['log_scales']).max(dim=1).values > 0.1 * variables['scene_radius']
to_remove = torch.logical_or(to_remove, big_points_ws)
params, variables = remove_points(to_remove, params, variables, optimizer)
torch.cuda.empty_cache()
# Reset Opacities for all Gaussians
if iter > 0 and iter % prune_dict['reset_opacities_every'] == 0 and prune_dict['reset_opacities']:
new_params = {'logit_opacities': inverse_sigmoid(torch.ones_like(params['logit_opacities']) * 0.01)}
params = update_params_and_optimizer(new_params, params, optimizer)
return params, variables
def densify(params, variables, optimizer, iter, densify_dict):
if iter <= densify_dict['stop_after']:
variables = accumulate_mean2d_gradient(variables)
grad_thresh = densify_dict['grad_thresh']
if (iter >= densify_dict['start_after']) and (iter % densify_dict['densify_every'] == 0):
grads = variables['means2D_gradient_accum'] / variables['denom']
grads[grads.isnan()] = 0.0
to_clone = torch.logical_and(grads >= grad_thresh, (
torch.max(torch.exp(params['log_scales']), dim=1).values <= 0.01 * variables['scene_radius']))
new_params = {k: v[to_clone] for k, v in params.items() if k not in ['cam_unnorm_rots', 'cam_trans']}
if 'timestep' in variables.keys():
new_timestep_vars = torch.zeros(new_params['means3D'].shape[0], device="cuda")
new_timestep_vars = variables['timestep'][to_clone]
variables['timestep'] = torch.cat((variables['timestep'], new_timestep_vars), dim=0)
params = cat_params_to_optimizer(new_params, params, optimizer)
num_pts = params['means3D'].shape[0]
padded_grad = torch.zeros(num_pts, device="cuda")
padded_grad[:grads.shape[0]] = grads
to_split = torch.logical_and(padded_grad >= grad_thresh,
torch.max(torch.exp(params['log_scales']), dim=1).values > 0.01 * variables[
'scene_radius'])
n = densify_dict['num_to_split_into'] # number to split into
new_params = {k: v[to_split].repeat(n, 1) for k, v in params.items() if k not in ['cam_unnorm_rots', 'cam_trans']}
#track new variables for new formed points
if 'timestep' in variables.keys():
new_timestep_vars = torch.zeros(new_params['means3D'].shape[0], device="cuda")
new_timestep_vars = variables['timestep'][to_split].repeat(n)
variables['timestep'] = torch.cat((variables['timestep'], new_timestep_vars), dim=0)
stds = torch.exp(params['log_scales'])[to_split].repeat(n, 3)
means = torch.zeros((stds.size(0), 3), device="cuda")
samples = torch.normal(mean=means, std=stds)
rots = build_rotation(params['unnorm_rotations'][to_split]).repeat(n, 1, 1)
new_params['means3D'] += torch.bmm(rots, samples.unsqueeze(-1)).squeeze(-1)
new_params['log_scales'] = torch.log(torch.exp(new_params['log_scales']) / (0.8 * n))
params = cat_params_to_optimizer(new_params, params, optimizer)
num_pts = params['means3D'].shape[0]
variables['means2D_gradient_accum'] = torch.zeros(num_pts, device="cuda")
variables['denom'] = torch.zeros(num_pts, device="cuda")
variables['max_2D_radius'] = torch.zeros(num_pts, device="cuda")
to_remove = torch.cat((to_split, torch.zeros(n * to_split.sum(), dtype=torch.bool, device="cuda")))
params, variables = remove_points(to_remove, params, variables, optimizer)
if iter == densify_dict['stop_after']:
remove_threshold = densify_dict['final_removal_opacity_threshold']
else:
remove_threshold = densify_dict['removal_opacity_threshold']
to_remove = (torch.sigmoid(params['logit_opacities']) < remove_threshold).squeeze()
if iter >= densify_dict['remove_big_after']:
big_points_ws = torch.exp(params['log_scales']).max(dim=1).values > 0.1 * variables['scene_radius']
to_remove = torch.logical_or(to_remove, big_points_ws)
params, variables = remove_points(to_remove, params, variables, optimizer)
torch.cuda.empty_cache()
# Reset Opacities for all Gaussians (This is not desired for mapping on only current frame)
if iter > 0 and iter % densify_dict['reset_opacities_every'] == 0 and densify_dict['reset_opacities']:
new_params = {'logit_opacities': inverse_sigmoid(torch.ones_like(params['logit_opacities']) * 0.01)}
params = update_params_and_optimizer(new_params, params, optimizer)
return params, variables
def update_learning_rate(optimizer, means3D_scheduler, iteration):
''' Learning rate scheduling per step '''
for param_group in optimizer.param_groups:
if param_group["name"] == "means3D":
lr = means3D_scheduler(iteration)
param_group['lr'] = lr
return lr
def get_expon_lr_func(
lr_init, lr_final, lr_delay_steps=0, lr_delay_mult=1.0, max_steps=1000000
):
"""
Copied from Plenoxels
Continuous learning rate decay function. Adapted from JaxNeRF
The returned rate is lr_init when step=0 and lr_final when step=max_steps, and
is log-linearly interpolated elsewhere (equivalent to exponential decay).
If lr_delay_steps>0 then the learning rate will be scaled by some smooth
function of lr_delay_mult, such that the initial learning rate is
lr_init*lr_delay_mult at the beginning of optimization but will be eased back
to the normal learning rate when steps>lr_delay_steps.
:param conf: config subtree 'lr' or similar
:param max_steps: int, the number of steps during optimization.
:return HoF which takes step as input
"""
def helper(step):
if step < 0 or (lr_init == 0.0 and lr_final == 0.0):
# Disable this parameter
return 0.0
if lr_delay_steps > 0:
# A kind of reverse cosine decay.
delay_rate = lr_delay_mult + (1 - lr_delay_mult) * np.sin(
0.5 * np.pi * np.clip(step / lr_delay_steps, 0, 1)
)
else:
delay_rate = 1.0
t = np.clip(step / max_steps, 0, 1)
log_lerp = np.exp(np.log(lr_init) * (1 - t) + np.log(lr_final) * t)
return delay_rate * log_lerp
return helper