-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase.py
78 lines (60 loc) · 2.22 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#!/usr/bin/env python
# coding : utf-8
"""
Basis for VOI analyzer.
"""
import pandas as pd
import numpy as np
import VOIAnalyzer.utils as utils
def _analysis(img_mat, voi_mat, voi_no, eps=1e-12):
""" Extract VOI statistices for each VOI.
"""
vec = img_mat[voi_mat == voi_no]
vec2 = vec[~np.isnan(vec)]
# Statistics
v_mean = float(vec2.mean())
v_sd = float(vec2.std(ddof=1))
v_cov = v_sd / (v_mean + eps) * 100.
v_max = float(vec2.max())
v_min = float(vec2.min())
n_vox = vec.size
# Output
out_tab = pd.DataFrame({"VOI No." : [voi_no],
"No. of voxels" : [n_vox],
"Mean" : [v_mean],
"SD" : [v_sd],
"CoV" : [v_cov],
"Max" : [v_max],
"Min" : [v_min]},
columns=["VOI No.", "No. of voxels",
"Mean", "SD", "CoV",
"Max", "Min"])
return out_tab
def voi_analysis(img_file, voi_file, lut_file=None):
""" Extract VOI values.
It outputs Pandas DataFrame for VOI statistics.
Inputs:
img_file : Path for image to extract VOI values
voi_file : Path for VOI map
lut_file : Path for look-up table for VOI map.
If not None, look-up table is applied to output table.
Output:
out_tab : Pandas DataFrame for VOI statistics.
"""
# Load image & VOI
img_mat, img_aff = utils.loadImage(img_file)[:2]
voi_mat = utils.loadImage(voi_file)[0].astype(np.int16)
# Extract
vno_list = np.unique(voi_mat)
out_tab = pd.concat([_analysis(img_mat, voi_mat, v_no)
for v_no in vno_list])
# Calculate volumes (unit: cm3)
vol_per_vox = np.abs(np.prod(np.diag(img_aff[:3, :3])))
out_tab.loc[:, "Volume"] = out_tab.loc[:, "No. of voxels"].values * vol_per_vox / 1000.
# Apply look-up table
if lut_file is not None:
lut = utils.loadLUT(lut_file)
out_tab.loc[:, "VOI"] = out_tab.loc[:, "VOI No."].map(lut)
# Image file name
out_tab.loc[:, "Path"] = img_file
return out_tab