forked from kvignesh1420/gnn_collapse
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
150 lines (132 loc) · 5.61 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os
import sys
import time
import hashlib
import json
import argparse
import pprint
import numpy as np
import torch
from torch_geometric.loader import DataLoader
import torch_geometric.transforms as T
from gnn_collapse.data.sbm import SBM
from gnn_collapse.models import GNN_factory
from gnn_collapse.models import Spectral_factory
from gnn_collapse.train.online import OnlineRunner
from gnn_collapse.train.online import OnlineIncRunner
from gnn_collapse.train.spectral import spectral_clustering
def prepare_gnn_model_hash(args):
model_args = {}
keys = [
"model_name", "N_train", "C", "Pr", "p_train", "q_train", "num_train_graphs", "feature_strategy",
"input_feature_dim", "hidden_feature_dim", "num_layers", "use_W1", "use_bias",
"batch_norm", "non_linearity", "loss_type", "optimizer", "lr", "weight_decay",
"sgd_momentum"
]
for key in keys:
model_args[key] = args[key]
_string_args = json.dumps(model_args, sort_keys=True).encode("utf-8")
parsed_args_hash = hashlib.md5(_string_args).hexdigest()
return parsed_args_hash
def prepare_config_hash(args):
_string_args = json.dumps(args, sort_keys=True).encode("utf-8")
parsed_args_hash = hashlib.md5(_string_args).hexdigest()
return parsed_args_hash
def get_run_args():
parser = argparse.ArgumentParser(description='Arguments for running the experiments')
parser.add_argument('config_file', type=str, help='config file for the run')
parsed_args = parser.parse_args()
with open(parsed_args.config_file) as f:
args = json.load(fp=f)
# create a unique hash for the model
model_uuid = ""
if args["model_name"] in GNN_factory:
model_uuid = prepare_gnn_model_hash(args=args)
# create a unique hash for the model
config_uuid = prepare_config_hash(args=args)
args["model_uuid"] = model_uuid
args["config_uuid"] = config_uuid
args["device"] = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(args)
if args["model_name"] not in GNN_factory and args["model_name"] not in Spectral_factory:
valid_options = list(GNN_factory.keys()) + list(Spectral_factory.keys())
sys.exit("Invalid model type. Should be one of: {}".format(valid_options))
if args["model_name"] in GNN_factory and args["non_linearity"] not in ["", "relu"]:
sys.exit("Invalid non_linearity. Should be one of: '', 'relu' ")
if args["model_name"] in GNN_factory and args["optimizer"] not in ["sgd", "adam"]:
sys.exit("Invalid non_linearity. Should be one of: 'sgd', 'adam' ")
vis_dir = args["out_dir"] + args["model_name"] + "/" + args["config_uuid"] + "/plots/"
results_dir = args["out_dir"] + args["model_name"] + "/" + args["config_uuid"] + "/results/"
results_file = results_dir + "run.txt"
if not os.path.exists(vis_dir):
print("Vis folder does not exist. Creating one!")
os.makedirs(vis_dir)
if not os.path.exists(results_dir):
print("Resuls folder does not exist. Creating one!")
os.makedirs(results_dir)
else:
print("Folder already exists!")
sys.exit()
args["vis_dir"] = vis_dir
args["results_dir"] = results_dir
args["results_file"] = results_file
with open(results_file, 'a') as f:
f.write("""CONFIG: \n{}\n""".format(pprint.pformat(args, sort_dicts=False)))
return args
if __name__ == "__main__":
args = get_run_args()
if args["model_name"] == 'easygt':
transform = T.AddLaplacianEigenvectorPE(10, attr_name=None)
if args["model_name"] not in ["bethe_hessian", "normalized_laplacian"]:
train_sbm_dataset = SBM(
args=args,
N=args["N_train"],
C=args["C"],
Pr=args["Pr"],
p=args["p_train"],
q=args["q_train"],
num_graphs=args["num_train_graphs"],
feature_strategy=args["feature_strategy"],
feature_dim=args["input_feature_dim"],
is_training=True,
transform=transform
)
nc_sbm_dataset = SBM(
args=args,
N=args["N_train"],
C=args["C"],
Pr=args["Pr"],
p=args["p_train"],
q=args["q_train"],
num_graphs=args["num_train_graphs"],
feature_strategy=args["feature_strategy"],
feature_dim=args["input_feature_dim"],
is_training=True,
transform=transform
)
# keep batch size = 1 for consistent measurement of loss and accuracies under
# permutation of classes.
train_dataloader = DataLoader(dataset=train_sbm_dataset, batch_size=1)
nc_dataloader = DataLoader(dataset=nc_sbm_dataset, batch_size=1)
test_sbm_dataset = SBM(
args=args,
N=args.get("N_test", args.get("N")),
C=args["C"],
Pr=args["Pr"],
p=args.get("p_test", args.get("p")),
q=args.get("q_test", args.get("q")),
num_graphs=args["num_test_graphs"],
feature_strategy=args["feature_strategy"],
feature_dim=args["input_feature_dim"],
is_training=False,
transform=transform
)
test_dataloader = DataLoader(dataset=test_sbm_dataset, batch_size=1)
if args["model_name"] in GNN_factory:
model_class = GNN_factory[args["model_name"]]
runner = OnlineRunner(args=args, model_class=model_class)
runner.run(train_dataloader=train_dataloader, nc_dataloader=nc_dataloader,
test_dataloader=test_dataloader)
else:
model_class = Spectral_factory[args["model_name"]]
spectral_clustering(model_class=model_class, dataloader=test_dataloader, args=args)