-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbasic_example.py
55 lines (44 loc) · 1.46 KB
/
basic_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import pyspark.sql.functions as f
from pyspark.sql import DataFrame
from pyspark.sql.types import IntegerType
from spetlr.etl import Extractor, Loader, Orchestrator, Transformer
from spetlr.spark import Spark
class GuitarExtractor(Extractor):
def read(self) -> DataFrame:
return Spark.get().createDataFrame(
Spark.get().sparkContext.parallelize(
[
("1", "Fender", "Telecaster", "1950"),
("2", "Gibson", "Les Paul", "1959"),
("3", "Ibanez", "RG", "1987"),
]
),
"""
id STRING,
brand STRING,
model STRING,
year STRING
""",
)
class BasicTransformer(Transformer):
def process(self, df: DataFrame) -> DataFrame:
print("Current DataFrame schema")
df.printSchema()
df = df.withColumn("id", f.col("id").cast(IntegerType()))
df = df.withColumn("year", f.col("year").cast(IntegerType()))
print("New DataFrame schema")
df.printSchema()
return df
class NoopLoader(Loader):
def save(self, df: DataFrame) -> None:
df.write.format("noop").mode("overwrite").save()
df.printSchema()
df.show()
print("ETL Orchestrator using a single simple transformer")
etl = (
Orchestrator()
.extract_from(GuitarExtractor())
.transform_with(BasicTransformer())
.load_into(NoopLoader())
)
etl.execute()