|
| 1 | +package com.sparkbyexamples.spark.dataframe |
| 2 | + |
| 3 | +import org.apache.spark.sql.SparkSession |
| 4 | +import org.apache.spark.sql.functions._ |
| 5 | + |
| 6 | +object GroupbyExample extends App { |
| 7 | + |
| 8 | + val spark: SparkSession = SparkSession.builder() |
| 9 | + .master("local[1]") |
| 10 | + .appName("SparkByExamples.com") |
| 11 | + .getOrCreate() |
| 12 | + |
| 13 | + spark.sparkContext.setLogLevel("ERROR") |
| 14 | + |
| 15 | + import spark.implicits._ |
| 16 | + |
| 17 | + val simpleData = Seq(("James","Sales","NY",90000,34,10000), |
| 18 | + ("Michael","Sales","NY",86000,56,20000), |
| 19 | + ("Robert","Sales","CA",81000,30,23000), |
| 20 | + ("Maria","Finance","CA",90000,24,23000), |
| 21 | + ("Raman","Finance","CA",99000,40,24000), |
| 22 | + ("Scott","Finance","NY",83000,36,19000), |
| 23 | + ("Jen","Finance","NY",79000,53,15000), |
| 24 | + ("Jeff","Marketing","CA",80000,25,18000), |
| 25 | + ("Kumar","Marketing","NY",91000,50,21000) |
| 26 | + ) |
| 27 | + val df = simpleData.toDF("employee_name","department","state","salary","age","bonus") |
| 28 | + df.show() |
| 29 | + |
| 30 | + //Group By on single column |
| 31 | + df.groupBy("department").count().show(false) |
| 32 | + df.groupBy("department").avg("salary").show(false) |
| 33 | + df.groupBy("department").sum("salary").show(false) |
| 34 | + df.groupBy("department").min("salary").show(false) |
| 35 | + df.groupBy("department").max("salary").show(false) |
| 36 | + df.groupBy("department").mean("salary").show(false) |
| 37 | + |
| 38 | + //GroupBy on multiple columns |
| 39 | + df.groupBy("department","state") |
| 40 | + .sum("salary","bonus") |
| 41 | + .show(false) |
| 42 | + df.groupBy("department","state") |
| 43 | + .avg("salary","bonus") |
| 44 | + .show(false) |
| 45 | + df.groupBy("department","state") |
| 46 | + .max("salary","bonus") |
| 47 | + .show(false) |
| 48 | + df.groupBy("department","state") |
| 49 | + .min("salary","bonus") |
| 50 | + .show(false) |
| 51 | + df.groupBy("department","state") |
| 52 | + .mean("salary","bonus") |
| 53 | + .show(false) |
| 54 | + |
| 55 | + //Running Filter |
| 56 | + df.groupBy("department","state") |
| 57 | + .sum("salary","bonus") |
| 58 | + .show(false) |
| 59 | + |
| 60 | + //using agg function |
| 61 | + df.groupBy("department") |
| 62 | + .agg( |
| 63 | + sum("salary").as("sum_salary"), |
| 64 | + avg("salary").as("avg_salary"), |
| 65 | + sum("bonus").as("sum_bonus"), |
| 66 | + max("bonus").as("max_bonus")) |
| 67 | + .show(false) |
| 68 | + |
| 69 | + df.groupBy("department") |
| 70 | + .agg( |
| 71 | + sum("salary").as("sum_salary"), |
| 72 | + avg("salary").as("avg_salary"), |
| 73 | + sum("bonus").as("sum_bonus"), |
| 74 | + stddev("bonus").as("stddev_bonus")) |
| 75 | + .where(col("sum_bonus") > 50000) |
| 76 | + .show(false) |
| 77 | +} |
0 commit comments