forked from NewtonsMama/cyclegan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerator_model.py
123 lines (107 loc) · 3.42 KB
/
generator_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
"""
Generator model for CycleGAN
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
* 2020-11-05: Initial coding
* 2022-12-21: Small revision of code, checked that it works with latest PyTorch version
"""
import torch
import torch.nn as nn
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels, down=True, use_act=True, **kwargs):
super().__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, padding_mode="reflect", **kwargs)
if down
else nn.ConvTranspose2d(in_channels, out_channels, **kwargs),
nn.InstanceNorm2d(out_channels),
nn.ReLU(inplace=True) if use_act else nn.Identity(),
)
def forward(self, x):
return self.conv(x)
class ResidualBlock(nn.Module):
def __init__(self, channels):
super().__init__()
self.block = nn.Sequential(
ConvBlock(channels, channels, kernel_size=3, padding=1),
ConvBlock(channels, channels, use_act=False, kernel_size=3, padding=1),
)
def forward(self, x):
return x + self.block(x)
class Generator(nn.Module):
def __init__(self, img_channels, num_features=64, num_residuals=9):
super().__init__()
self.initial = nn.Sequential(
nn.Conv2d(
img_channels,
num_features,
kernel_size=7,
stride=1,
padding=3,
padding_mode="reflect",
),
nn.InstanceNorm2d(num_features),
nn.ReLU(inplace=True),
)
self.down_blocks = nn.ModuleList(
[
ConvBlock(
num_features, num_features * 2, kernel_size=3, stride=2, padding=1
),
ConvBlock(
num_features * 2,
num_features * 4,
kernel_size=3,
stride=2,
padding=1,
),
]
)
self.res_blocks = nn.Sequential(
*[ResidualBlock(num_features * 4) for _ in range(num_residuals)]
)
self.up_blocks = nn.ModuleList(
[
ConvBlock(
num_features * 4,
num_features * 2,
down=False,
kernel_size=3,
stride=2,
padding=1,
output_padding=1,
),
ConvBlock(
num_features * 2,
num_features * 1,
down=False,
kernel_size=3,
stride=2,
padding=1,
output_padding=1,
),
]
)
self.last = nn.Conv2d(
num_features * 1,
img_channels,
kernel_size=7,
stride=1,
padding=3,
padding_mode="reflect",
)
def forward(self, x):
x = self.initial(x)
for layer in self.down_blocks:
x = layer(x)
x = self.res_blocks(x)
for layer in self.up_blocks:
x = layer(x)
return torch.tanh(self.last(x))
def test():
img_channels = 1
img_size = 256
x = torch.randn((2, img_channels, img_size, img_size))
gen = Generator(img_channels, 9)
print(gen(x).shape)
if __name__ == "__main__":
test()