Skip to content

Msgpack serialization/deserialization library for Python, written in Rust using PyO3 and rust-msgpack. Reboot of orjson. msgpack.org[Python]

License

Notifications You must be signed in to change notification settings

solsolution/ormsgpack

 
 

Repository files navigation

ormsgpack

PyPI PyPI - Downloads

ormsgpack is a fast msgpack library for Python. It is a fork/reboot of orjson It serializes faster than msgpack-python and deserializes a bit slower (right now). It supports serialization of: dataclass, datetime, numpy, pydantic and UUID instances natively.

Its features and drawbacks compared to other Python msgpack libraries:

  • serializes dataclass instances natively.
  • serializes datetime, date, and time instances to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00"
  • serializes numpy.ndarray instances natively and faster.
  • serializes pydantic.BaseModel instances natively
  • serializes arbitrary types using a default hook

ormsgpack supports CPython 3.8, 3.9, 3.10, 3.11 and 3.12. ormsgpack does not support PyPy. Releases follow semantic versioning and serializing a new object type without an opt-in flag is considered a breaking change.

ormsgpack is licensed under both the Apache 2.0 and MIT licenses. The repository and issue tracker is github.com/aviramha/ormsgpack, and patches may be submitted there. There is a CHANGELOG available in the repository.

  1. Usage
    1. Install
    2. Quickstart
    3. Serialize
      1. default
      2. option
    4. Deserialize
  2. Types
    1. dataclass
    2. datetime
    3. enum
    4. float
    5. int
    6. numpy
    7. uuid
    8. pydantic
  3. Latency
  4. Questions
  5. Packaging
  6. License

Usage

Install

To install a wheel from PyPI:

pip install --upgrade "pip>=20.3" # manylinux_x_y, universal2 wheel support
pip install --upgrade ormsgpack

To build a wheel, see packaging.

Quickstart

This is an example of serializing, with options specified, and deserializing:

>>> import ormsgpack, datetime, numpy
>>> data = {
...     "type": "job",
...     "created_at": datetime.datetime(1970, 1, 1),
...     "status": "🆗",
...     "payload": numpy.array([[1, 2], [3, 4]]),
... }
>>> ormsgpack.packb(data, option=ormsgpack.OPT_NAIVE_UTC | ormsgpack.OPT_SERIALIZE_NUMPY)
b'\x84\xa4type\xa3job\xaacreated_at\xb91970-01-01T00:00:00+00:00\xa6status\xa4\xf0\x9f\x86\x97\xa7payload\x92\x92\x01\x02\x92\x03\x04'
>>> ormsgpack.unpackb(_)
{'type': 'job', 'created_at': '1970-01-01T00:00:00+00:00', 'status': '🆗', 'payload': [[1, 2], [3, 4]]}

Serialize

def packb(
    __obj: Any,
    default: Optional[Callable[[Any], Any]] = ...,
    option: Optional[int] = ...,
) -> bytes: ...

packb() serializes Python objects to msgpack.

It natively serializes bytes, str, dict, list, tuple, int, float, bool, dataclasses.dataclass, typing.TypedDict, datetime.datetime, datetime.date, datetime.time, uuid.UUID, numpy.ndarray, and None instances. It supports arbitrary types through default. It serializes subclasses of str, int, dict, list, dataclasses.dataclass, and enum.Enum. It does not serialize subclasses of tuple to avoid serializing namedtuple objects as arrays. To avoid serializing subclasses, specify the option ormsgpack.OPT_PASSTHROUGH_SUBCLASS.

The output is a bytes object containing UTF-8.

The global interpreter lock (GIL) is held for the duration of the call.

It raises MsgpackEncodeError on an unsupported type. This exception message describes the invalid object with the error message Type is not msgpack serializable: .... To fix this, specify default.

It raises MsgpackEncodeError on a str that contains invalid UTF-8.

It raises MsgpackEncodeError if a dict has a key of a type other than str or bytes, unless OPT_NON_STR_KEYS is specified.

It raises MsgpackEncodeError if the output of default recurses to handling by default more than 254 levels deep.

It raises MsgpackEncodeError on circular references.

It raises MsgpackEncodeError if a tzinfo on a datetime object is unsupported.

MsgpackEncodeError is a subclass of TypeError.

default

To serialize a subclass or arbitrary types, specify default as a callable that returns a supported type. default may be a function, lambda, or callable class instance. To specify that a type was not handled by default, raise an exception such as TypeError.

>>> import ormsgpack, decimal
>>> def default(obj):
...     if isinstance(obj, decimal.Decimal):
...         return str(obj)
...     raise TypeError
...
>>> ormsgpack.packb(decimal.Decimal("0.0842389659712649442845"))
TypeError: Type is not msgpack serializable: decimal.Decimal
>>> ormsgpack.packb(decimal.Decimal("0.0842389659712649442845"), default=default)
b'\xb80.0842389659712649442845'
>>> ormsgpack.packb({1, 2}, default=default)
TypeError: Type is not msgpack serializable: set

The default callable may return an object that itself must be handled by default up to 254 times before an exception is raised.

It is important that default raise an exception if a type cannot be handled. Python otherwise implicitly returns None, which appears to the caller like a legitimate value and is serialized:

>>> import ormsgpack, decimal
>>> def default(obj):
...     if isinstance(obj, decimal.Decimal):
...         return str(obj)
...
>>> ormsgpack.packb({"set":{1, 2}}, default=default)
b'\x81\xa3set\xc0'
>>> ormsgpack.unpackb(_)
{'set': None}

To serialize a type as a MessagePack extension type, return an ormsgpack.Ext object. The instantiation arguments are an integer in the range [0, 127] and a bytes object, defining the type and value, respectively.

>>> import ormsgpack, decimal
>>> def default(obj):
...     if isinstance(obj, decimal.Decimal):
...         return ormsgpack.Ext(0, str(obj).encode())
...     raise TypeError
...
>>> ormsgpack.packb(decimal.Decimal("0.0842389659712649442845"), default=default)
b'\xc7\x18\x000.0842389659712649442845'

option

To modify how data is serialized, specify option. Each option is an integer constant in ormsgpack. To specify multiple options, mask them together, e.g., option=ormsgpack.OPT_NON_STR_KEYS | ormsgpack.OPT_NAIVE_UTC.

OPT_NAIVE_UTC

Serialize datetime.datetime objects without a tzinfo and numpy.datetime64 objects as UTC. This has no effect on datetime.datetime objects that have tzinfo set.

>>> import ormsgpack, datetime
>>> ormsgpack.packb(
...     datetime.datetime(1970, 1, 1, 0, 0, 0),
... )
b'\xb31970-01-01T00:00:00'
>>> ormsgpack.unpackb(_)
'1970-01-01T00:00:00'
>>> ormsgpack.packb(
...     datetime.datetime(1970, 1, 1, 0, 0, 0),
...     option=ormsgpack.OPT_NAIVE_UTC,
... )
b'\xb91970-01-01T00:00:00+00:00'
>>> ormsgpack.unpackb(_)
'1970-01-01T00:00:00+00:00'
OPT_NON_STR_KEYS

Serialize dict keys of type other than str. This allows dict keys to be one of str, int, float, bool, None, datetime.datetime, datetime.date, datetime.time, enum.Enum, and uuid.UUID.

>>> import ormsgpack, datetime, uuid
>>> ormsgpack.packb(
...     {uuid.UUID("7202d115-7ff3-4c81-a7c1-2a1f067b1ece"): [1, 2, 3]},
...     option=ormsgpack.OPT_NON_STR_KEYS,
... )
b'\x81\xd9$7202d115-7ff3-4c81-a7c1-2a1f067b1ece\x93\x01\x02\x03'
>>> ormsgpack.unpackb(_)
{'7202d115-7ff3-4c81-a7c1-2a1f067b1ece': [1, 2, 3]}
>>> ormsgpack.packb(
...     {datetime.datetime(1970, 1, 1, 0, 0, 0): [1, 2, 3]},
...     option=ormsgpack.OPT_NON_STR_KEYS | ormsgpack.OPT_NAIVE_UTC,
... )
b'\x81\xb91970-01-01T00:00:00+00:00\x93\x01\x02\x03'
>>> ormsgpack.unpackb(_)
{'1970-01-01T00:00:00+00:00': [1, 2, 3]}

These types are generally serialized how they would be as values, e.g., datetime.datetime is still an RFC 3339 string and respects options affecting it.

This option has the risk of creating duplicate keys. This is because non-str objects may serialize to the same str as an existing key, e.g., {"1970-01-01T00:00:00+00:00": true, datetime.datetime(1970, 1, 1, 0, 0, 0): false}. The last key to be inserted to the dict will be serialized last and a msgpack deserializer will presumably take the last occurrence of a key (in the above, false). The first value will be lost.

This option is not compatible with ormsgpack.OPT_SORT_KEYS.

OPT_OMIT_MICROSECONDS

Do not serialize the microsecond component of datetime.datetime, datetime.time and numpy.datetime64 instances.

>>> import ormsgpack, datetime
>>> ormsgpack.packb(
...     datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
... )
b'\xba1970-01-01T00:00:00.000001'
>>> ormsgpack.unpackb(_)
'1970-01-01T00:00:00.000001'
>>> ormsgpack.packb(
...     datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
...     option=ormsgpack.OPT_OMIT_MICROSECONDS,
... )
b'\xb31970-01-01T00:00:00'
>>> ormsgpack.unpackb(_)
'1970-01-01T00:00:00'
OPT_PASSTHROUGH_BIG_INT

Enables passthrough of big (Python) ints. By setting this option, one can set a default function for ints larger than 63 bits, smaller ints are still serialized efficiently.

>>> import ormsgpack
>>> ormsgpack.packb(
...     2**65,
... )
TypeError: Integer exceeds 64-bit range
>>> ormsgpack.packb(
...     2**65,
...     option=ormsgpack.OPT_PASSTHROUGH_BIG_INT,
...     default=lambda _: {"type": "bigint", "value": str(_) }
... )
b'\x82\xa4type\xa6bigint\xa5value\xb436893488147419103232'
>>> ormsgpack.unpackb(_)
{'type': 'bigint', 'value': '36893488147419103232'}
OPT_PASSTHROUGH_DATACLASS

Passthrough dataclasses.dataclass instances to default. This allows customizing their output but is much slower.

>>> import ormsgpack, dataclasses
>>> @dataclasses.dataclass
... class User:
...     id: str
...     name: str
...     password: str
...
>>> def default(obj):
...     if isinstance(obj, User):
...         return {"id": obj.id, "name": obj.name}
...     raise TypeError
...
>>> ormsgpack.packb(User("3b1", "asd", "zxc"))
b'\x83\xa2id\xa33b1\xa4name\xa3asd\xa8password\xa3zxc'
>>> ormsgpack.packb(User("3b1", "asd", "zxc"), option=ormsgpack.OPT_PASSTHROUGH_DATACLASS)
TypeError: Type is not msgpack serializable: User
>>> ormsgpack.packb(
...     User("3b1", "asd", "zxc"),
...     option=ormsgpack.OPT_PASSTHROUGH_DATACLASS,
...     default=default,
... )
b'\x82\xa2id\xa33b1\xa4name\xa3asd'
OPT_PASSTHROUGH_DATETIME

Passthrough datetime.datetime, datetime.date, and datetime.time instances to default. This allows serializing datetimes to a custom format, e.g., HTTP dates:

>>> import ormsgpack, datetime
>>> def default(obj):
...     if isinstance(obj, datetime.datetime):
...         return obj.strftime("%a, %d %b %Y %H:%M:%S GMT")
...     raise TypeError
...
>>> ormsgpack.packb({"created_at": datetime.datetime(1970, 1, 1)})
b'\x81\xaacreated_at\xb31970-01-01T00:00:00'
>>> ormsgpack.packb({"created_at": datetime.datetime(1970, 1, 1)}, option=ormsgpack.OPT_PASSTHROUGH_DATETIME)
TypeError: Type is not msgpack serializable: datetime.datetime
>>> ormsgpack.packb(
...     {"created_at": datetime.datetime(1970, 1, 1)},
...     option=ormsgpack.OPT_PASSTHROUGH_DATETIME,
...     default=default,
... )
b'\x81\xaacreated_at\xbdThu, 01 Jan 1970 00:00:00 GMT'

This does not affect datetimes in dict keys if using OPT_NON_STR_KEYS.

OPT_PASSTHROUGH_SUBCLASS

Passthrough subclasses of builtin types to default.

>>> import ormsgpack
>>> class Secret(str):
...     pass
...
>>> def default(obj):
...     if isinstance(obj, Secret):
...         return "******"
...     raise TypeError
...
>>> ormsgpack.packb(Secret("zxc"))
b'\xa3zxc'
>>> ormsgpack.packb(Secret("zxc"), option=ormsgpack.OPT_PASSTHROUGH_SUBCLASS)
TypeError: Type is not msgpack serializable: Secret
>>> ormsgpack.packb(Secret("zxc"), option=ormsgpack.OPT_PASSTHROUGH_SUBCLASS, default=default)
b'\xa6******'

This does not affect serializing subclasses as dict keys if using OPT_NON_STR_KEYS.

OPT_PASSTHROUGH_TUPLE

Passthrough tuples to default.

>>> import ormsgpack
>>> ormsgpack.packb(
...     (9193, "test", 42),
... )
b'\x93\xcd#\xe9\xa4test*'
>>> ormsgpack.unpackb(_)
[9193, 'test', 42]
>>> ormsgpack.packb(
...     (9193, "test", 42),
...     option=ormsgpack.OPT_PASSTHROUGH_TUPLE,
...     default=lambda _: {"type": "tuple", "value": list(_)}
... )
b'\x82\xa4type\xa5tuple\xa5value\x93\xcd#\xe9\xa4test*'
>>> ormsgpack.unpackb(_)
{'type': 'tuple', 'value': [9193, 'test', 42]}
OPT_SERIALIZE_NUMPY

Serialize numpy.ndarray instances. For more, see numpy.

OPT_SERIALIZE_PYDANTIC

Serialize pydantic.BaseModel instances.

OPT_SORT_KEYS

Serialize dict keys in sorted order. The default is to serialize in an unspecified order.

This can be used to ensure the order is deterministic for hashing or tests. It has a substantial performance penalty and is not recommended in general.

>>> import ormsgpack
>>> ormsgpack.packb({"b": 1, "c": 2, "a": 3})
b'\x83\xa1b\x01\xa1c\x02\xa1a\x03'
>>> ormsgpack.packb({"b": 1, "c": 2, "a": 3}, option=ormsgpack.OPT_SORT_KEYS)
b'\x83\xa1a\x03\xa1b\x01\xa1c\x02'

The sorting is not collation/locale-aware:

>>> import ormsgpack
>>> ormsgpack.packb({"a": 1, "ä": 2, "A": 3}, option=ormsgpack.OPT_SORT_KEYS)
b'\x83\xa1A\x03\xa1a\x01\xa2\xc3\xa4\x02'

dataclass also serialize as maps but this has no effect on them.

OPT_UTC_Z

Serialize a UTC timezone on datetime.datetime and numpy.datetime64 instances as Z instead of +00:00.

>>> import ormsgpack, datetime
>>> ormsgpack.packb(
...     datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc),
... )
b'\xb91970-01-01T00:00:00+00:00'
>>> ormsgpack.packb(
...     datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc),
...     option=ormsgpack.OPT_UTC_Z
... )
b'\xb41970-01-01T00:00:00Z'

Deserialize

def unpackb(
    __obj: Union[bytes, bytearray, memoryview],
    /,
    ext_hook: Optional[Callable[[int, bytes], Any]] = ...,
    option: Optional[int] = ...,
) -> Any: ...

unpackb() deserializes msgpack to Python objects. It deserializes to dict, list, int, float, str, bool, bytes and None objects.

bytes, bytearray, memoryview input are accepted.

ormsgpack maintains a cache of map keys for the duration of the process. This causes a net reduction in memory usage by avoiding duplicate strings. The keys must be at most 64 bytes to be cached and 512 entries are stored.

The global interpreter lock (GIL) is held for the duration of the call.

It raises MsgpackDecodeError if given an invalid type or invalid msgpack.

MsgpackDecodeError is a subclass of ValueError.

ext_hook

To deserialize extension types, specify the optional ext_hook argument. The value should be a callable and is invoked with the extension type and value as arguments.

>>> import ormsgpack, decimal
>>> def ext_hook(tag, data):
...     if tag == 0:
...         return decimal.Decimal(data.decode())
...     raise TypeError
...
>>> ormsgpack.packb(
...     ormsgpack.Ext(0, str(decimal.Decimal("0.0842389659712649442845")).encode())
... )
b'\xc7\x18\x000.0842389659712649442845'
>>> ormsgpack.unpackb(_, ext_hook=ext_hook)
Decimal('0.0842389659712649442845'

option

unpackb() supports the OPT_NON_STR_KEYS option, that is similar to original msgpack's strict_map_key=False. Be aware that this option is considered unsafe and disabled by default in msgpack due to possibility of HashDoS.

Types

dataclass

ormsgpack serializes instances of dataclasses.dataclass natively. It serializes instances 40-50x as fast as other libraries and avoids a severe slowdown seen in other libraries compared to serializing dict.

It is supported to pass all variants of dataclasses, including dataclasses using __slots__, frozen dataclasses, those with optional or default attributes, and subclasses. There is a performance benefit to not using __slots__.

Dataclasses are serialized as maps, with every attribute serialized and in the order given on class definition:

>>> import dataclasses, ormsgpack, typing
>>> @dataclasses.dataclass
... class Member:
...     id: int
...     active: bool = dataclasses.field(default=False)
...
>>> @dataclasses.dataclass
... class Object:
...     id: int
...     name: str
...     members: typing.List[Member]
...
>>> ormsgpack.packb(Object(1, "a", [Member(1, True), Member(2)]))
b'\x83\xa2id\x01\xa4name\xa1a\xa7members\x92\x82\xa2id\x01\xa6active\xc3\x82\xa2id\x02\xa6active\xc2'

Performance

alt text

--------------------------------------------------------------------------------- benchmark 'dataclass': 2 tests --------------------------------------------------------------------------------
Name (time in ms)                 Min                 Max                Mean            StdDev              Median               IQR            Outliers       OPS            Rounds  Iterations
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_dataclass_ormsgpack       3.4248 (1.0)        7.7949 (1.0)        3.6266 (1.0)      0.3293 (1.0)        3.5815 (1.0)      0.0310 (1.0)          4;34  275.7434 (1.0)         240           1
test_dataclass_msgpack       140.2774 (40.96)    143.6087 (18.42)    141.3847 (38.99)    1.0038 (3.05)     141.1823 (39.42)    0.7304 (23.60)         2;1    7.0729 (0.03)          8           1
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

datetime

ormsgpack serializes datetime.datetime objects to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00". This is a subset of ISO 8601 and is compatible with isoformat() in the standard library.

>>> import ormsgpack, datetime, zoneinfo
>>> ormsgpack.packb(
...     datetime.datetime(2018, 12, 1, 2, 3, 4, 9, tzinfo=zoneinfo.ZoneInfo('Australia/Adelaide'))
... )
b'\xd9 2018-12-01T02:03:04.000009+10:30'
>>> ormsgpack.unpackb(_)
'2018-12-01T02:03:04.000009+10:30'
>>> ormsgpack.packb(
...     datetime.datetime.fromtimestamp(4123518902).replace(tzinfo=datetime.timezone.utc)
... )
b'\xb92100-09-02T00:55:02+00:00'
>>> ormsgpack.unpackb(_)
'2100-09-02T00:55:02+00:00'
>>> ormsgpack.packb(
...     datetime.datetime.fromtimestamp(4123518902)
... )
b'\xb32100-09-02T00:55:02'
>>> ormsgpack.unpackb(_)
'2100-09-02T00:55:02'

datetime.datetime supports instances with a tzinfo that is None, datetime.timezone.utc, a timezone instance from the python3.9+ zoneinfo module, or a timezone instance from the third-party pendulum, pytz, or dateutil/arrow libraries.

datetime.time objects must not have a tzinfo.

>>> import ormsgpack, datetime
>>> ormsgpack.packb(datetime.time(12, 0, 15, 290))
b'\xaf12:00:15.000290'
>>> ormsgpack.unpackb(_)
'12:00:15.000290'

datetime.date objects will always serialize.

>>> import ormsgpack, datetime
>>> ormsgpack.packb(datetime.date(1900, 1, 2))
b'\xaa1900-01-02'
>>> ormsgpack.unpackb(_)
'1900-01-02'

Errors with tzinfo result in MsgpackEncodeError being raised.

To disable serialization of datetime objects specify the option ormsgpack.OPT_PASSTHROUGH_DATETIME.

To use "Z" suffix instead of "+00:00" to indicate UTC ("Zulu") time, use the option ormsgpack.OPT_UTC_Z.

To assume datetimes without timezone are UTC, use the option ormsgpack.OPT_NAIVE_UTC.

enum

ormsgpack serializes enums natively. Options apply to their values.

>>> import enum, datetime, ormsgpack
>>> class DatetimeEnum(enum.Enum):
...     EPOCH = datetime.datetime(1970, 1, 1, 0, 0, 0)
...
>>> ormsgpack.packb(DatetimeEnum.EPOCH)
b'\xb31970-01-01T00:00:00'
>>> ormsgpack.unpackb(_)
'1970-01-01T00:00:00'
>>> ormsgpack.packb(DatetimeEnum.EPOCH, option=ormsgpack.OPT_NAIVE_UTC)
b'\xb91970-01-01T00:00:00+00:00'
>>> ormsgpack.unpackb(_)
'1970-01-01T00:00:00+00:00'

Enums with members that are not supported types can be serialized using default:

>>> import enum, ormsgpack
>>> class Custom:
...     def __init__(self, val):
...         self.val = val
...
>>> def default(obj):
...     if isinstance(obj, Custom):
...         return obj.val
...     raise TypeError
...
>>> class CustomEnum(enum.Enum):
...     ONE = Custom(1)
...
>>> ormsgpack.packb(CustomEnum.ONE, default=default)
b'\x01'
>>> ormsgpack.unpackb(_)
1

float

ormsgpack serializes and deserializes double precision floats with no loss of precision and consistent rounding.

int

ormsgpack serializes and deserializes 64-bit integers by default. The range supported is a signed 64-bit integer's minimum (-9223372036854775807) to an unsigned 64-bit integer's maximum (18446744073709551615).

numpy

ormsgpack natively serializes numpy.ndarray and individual numpy.float64, numpy.float32, numpy.float16, numpy.int64, numpy.int32, numpy.int16, numpy.int8, numpy.uint64, numpy.uint32, numpy.uint16, numpy.uint8, numpy.uintp, numpy.intp, numpy.datetime64, and numpy.bool instances.

numpy.datetime64 instances are serialized as RFC 3339 strings.

ormsgpack is faster than all compared libraries at serializing numpy instances. Serializing numpy data requires specifying option=ormsgpack.OPT_SERIALIZE_NUMPY.

>>> import ormsgpack, numpy
>>> ormsgpack.packb(
...     numpy.array([[1, 2, 3], [4, 5, 6]]),
...     option=ormsgpack.OPT_SERIALIZE_NUMPY,
... )
b'\x92\x93\x01\x02\x03\x93\x04\x05\x06'
>>> ormsgpack.unpackb(_)
[[1, 2, 3], [4, 5, 6]]

The array must be a contiguous C array (C_CONTIGUOUS) and one of the supported datatypes.

If an array is not a contiguous C array or contains an supported datatype, ormsgpack falls through to default. In default, obj.tolist() can be specified. If an array is malformed, which is not expected, ormsgpack.MsgpackEncodeError is raised.

Performance

alt text alt text alt text alt text alt text

---------------------------------------------------------------------------------- benchmark 'numpy float64': 2 tests ---------------------------------------------------------------------------------
Name (time in ms)                      Min                 Max                Mean             StdDev              Median                IQR            Outliers      OPS            Rounds  Iterations
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_numpy_ormsgpack[float64]      77.9625 (1.0)       85.2507 (1.0)       79.0326 (1.0)       1.9043 (1.0)       78.5505 (1.0)       0.7408 (1.0)           1;1  12.6530 (1.0)          13           1
test_numpy_msgpack[float64]       511.5176 (6.56)     606.9395 (7.12)     559.0017 (7.07)     44.0661 (23.14)    572.5499 (7.29)     81.2972 (109.75)        3;0   1.7889 (0.14)          5           1
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


------------------------------------------------------------------------------------- benchmark 'numpy int32': 2 tests -------------------------------------------------------------------------------------
Name (time in ms)                      Min                   Max                  Mean             StdDev                Median                IQR            Outliers     OPS            Rounds  Iterations
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_numpy_ormsgpack[int32]       197.8751 (1.0)        210.3111 (1.0)        201.1033 (1.0)       5.1886 (1.0)        198.8518 (1.0)       3.8297 (1.0)           1;1  4.9726 (1.0)           5           1
test_numpy_msgpack[int32]       1,363.8515 (6.89)     1,505.4747 (7.16)     1,428.2127 (7.10)     53.4176 (10.30)    1,425.3516 (7.17)     72.8064 (19.01)         2;0  0.7002 (0.14)          5           1
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


-------------------------------------------------------------------------------- benchmark 'numpy int8': 2 tests ---------------------------------------------------------------------------------
Name (time in ms)                   Min                 Max                Mean            StdDev              Median                IQR            Outliers     OPS            Rounds  Iterations
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_numpy_ormsgpack[int8]     107.8013 (1.0)      113.7336 (1.0)      109.0364 (1.0)      1.7805 (1.0)      108.3574 (1.0)       0.4066 (1.0)           1;2  9.1712 (1.0)          10           1
test_numpy_msgpack[int8]       685.4149 (6.36)     703.2958 (6.18)     693.2396 (6.36)     7.9572 (4.47)     691.5435 (6.38)     14.4142 (35.45)         1;0  1.4425 (0.16)          5           1
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


------------------------------------------------------------------------------------- benchmark 'numpy npbool': 2 tests --------------------------------------------------------------------------------------
Name (time in ms)                       Min                   Max                  Mean             StdDev                Median                IQR            Outliers      OPS            Rounds  Iterations
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_numpy_ormsgpack[npbool]        87.9005 (1.0)         89.5460 (1.0)         88.7928 (1.0)       0.5098 (1.0)         88.8508 (1.0)       0.6609 (1.0)           4;0  11.2622 (1.0)          12           1
test_numpy_msgpack[npbool]       1,095.0599 (12.46)    1,176.3442 (13.14)    1,120.5916 (12.62)    32.9993 (64.73)    1,110.4216 (12.50)    38.4189 (58.13)         1;0   0.8924 (0.08)          5           1
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


--------------------------------------------------------------------------------- benchmark 'numpy uint8': 2 tests ---------------------------------------------------------------------------------
Name (time in ms)                    Min                 Max                Mean             StdDev              Median                IQR            Outliers     OPS            Rounds  Iterations
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_numpy_ormsgpack[uint8]     133.1743 (1.0)      134.7246 (1.0)      134.2793 (1.0)       0.4946 (1.0)      134.3120 (1.0)       0.4492 (1.0)           1;1  7.4472 (1.0)           8           1
test_numpy_msgpack[uint8]       727.1393 (5.46)     824.8247 (6.12)     775.7032 (5.78)     34.9887 (70.73)    775.9595 (5.78)     36.2824 (80.78)         2;0  1.2892 (0.17)          5           1
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

uuid

ormsgpack serializes uuid.UUID instances to RFC 4122 format, e.g., "f81d4fae-7dec-11d0-a765-00a0c91e6bf6".

>>> import ormsgpack, uuid
>>> ormsgpack.packb(uuid.UUID('f81d4fae-7dec-11d0-a765-00a0c91e6bf6'))
b'\xd9$f81d4fae-7dec-11d0-a765-00a0c91e6bf6'
>>> ormsgpack.unpackb(_)
'f81d4fae-7dec-11d0-a765-00a0c91e6bf6'
>>> ormsgpack.packb(uuid.uuid5(uuid.NAMESPACE_DNS, "python.org"))
b'\xd9$886313e1-3b8a-5372-9b90-0c9aee199e5d'
>>> ormsgpack.unpackb(_)
'886313e1-3b8a-5372-9b90-0c9aee199e5d

Pydantic

ormsgpack serializes pydantic.BaseModel instances natively.

Performance

alt text

-------------------------------------------------------------------------------- benchmark 'pydantic': 2 tests ---------------------------------------------------------------------------------
Name (time in ms)                Min                 Max                Mean            StdDev              Median               IQR            Outliers       OPS            Rounds  Iterations
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_pydantic_ormsgpack       4.3918 (1.0)       12.6521 (1.0)        4.8550 (1.0)      1.1455 (3.98)       4.6101 (1.0)      0.0662 (1.0)         11;24  205.9727 (1.0)         204           1
test_pydantic_msgpack       124.5500 (28.36)    125.5427 (9.92)     125.0582 (25.76)    0.2877 (1.0)      125.0855 (27.13)    0.2543 (3.84)          2;0    7.9963 (0.04)          8           1
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Latency

Graphs

alt text alt text alt text alt text alt text alt text alt text alt text

Data

----------------------------------------------------------------------------- benchmark 'canada packb': 2 tests ------------------------------------------------------------------------------
Name (time in ms)                   Min                Max              Mean            StdDev            Median               IQR            Outliers       OPS            Rounds  Iterations
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_packb[canada]     3.5302 (1.0)       3.8939 (1.0)      3.7319 (1.0)      0.0563 (1.0)      3.7395 (1.0)      0.0484 (1.0)         56;22  267.9571 (1.0)         241           1
test_msgpack_packb[canada]       8.8642 (2.51)     14.0432 (3.61)     9.3660 (2.51)     0.5649 (10.03)    9.2983 (2.49)     0.0982 (2.03)         3;11  106.7691 (0.40)        106           1
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


------------------------------------------------------------------------------- benchmark 'canada unpackb': 2 tests --------------------------------------------------------------------------------
Name (time in ms)                      Min                Max               Mean             StdDev             Median                IQR            Outliers      OPS            Rounds  Iterations
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_msgpack_unpackb[canada]       10.1176 (1.0)      62.0466 (1.18)     33.4806 (1.0)      18.8279 (1.0)      46.6582 (1.0)      38.5921 (1.02)         30;0  29.8680 (1.0)          67           1
test_ormsgpack_unpackb[canada]     11.3992 (1.13)     52.6587 (1.0)      34.1842 (1.02)     18.9461 (1.01)     47.6456 (1.02)     37.8024 (1.0)           8;0  29.2533 (0.98)         20           1
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


----------------------------------------------------------------------------- benchmark 'citm_catalog packb': 2 tests -----------------------------------------------------------------------------
Name (time in ms)                         Min               Max              Mean            StdDev            Median               IQR            Outliers       OPS            Rounds  Iterations
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_packb[citm_catalog]     1.8024 (1.0)      2.1259 (1.0)      1.9487 (1.0)      0.0346 (1.0)      1.9525 (1.0)      0.0219 (1.0)         79;60  513.1650 (1.0)         454           1
test_msgpack_packb[citm_catalog]       3.4195 (1.90)     3.8128 (1.79)     3.6928 (1.90)     0.0535 (1.55)     3.7009 (1.90)     0.0250 (1.14)        47;49  270.7958 (0.53)        257           1
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


------------------------------------------------------------------------------ benchmark 'citm_catalog unpackb': 2 tests ------------------------------------------------------------------------------
Name (time in ms)                           Min                Max               Mean             StdDev            Median               IQR            Outliers      OPS            Rounds  Iterations
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_unpackb[citm_catalog]     5.6986 (1.0)      46.1843 (1.0)      14.2491 (1.0)      15.9791 (1.0)      6.1051 (1.0)      0.3074 (1.0)           5;5  70.1798 (1.0)          23           1
test_msgpack_unpackb[citm_catalog]       7.2600 (1.27)     56.6642 (1.23)     16.4095 (1.15)     16.3257 (1.02)     7.7364 (1.27)     0.4944 (1.61)        28;29  60.9404 (0.87)        125           1
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


----------------------------------------------------------------------------------- benchmark 'github packb': 2 tests -----------------------------------------------------------------------------------
Name (time in us)                     Min                 Max                Mean            StdDev              Median               IQR            Outliers  OPS (Kops/s)            Rounds  Iterations
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_packb[github]      73.0000 (1.0)      215.9000 (1.0)       80.4826 (1.0)      4.8889 (1.0)       80.3000 (1.0)      1.1000 (1.83)     866;1118       12.4250 (1.0)        6196           1
test_msgpack_packb[github]       103.8000 (1.42)     220.8000 (1.02)     112.8049 (1.40)     4.9686 (1.02)     113.0000 (1.41)     0.6000 (1.0)     1306;1560        8.8649 (0.71)       7028           1
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


----------------------------------------------------------------------------------- benchmark 'github unpackb': 2 tests -----------------------------------------------------------------------------------
Name (time in us)                       Min                 Max                Mean            StdDev              Median               IQR            Outliers  OPS (Kops/s)            Rounds  Iterations
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_unpackb[github]     201.3000 (1.0)      318.5000 (1.0)      219.0861 (1.0)      6.7340 (1.0)      219.1000 (1.0)      1.2000 (1.0)       483;721        4.5644 (1.0)        3488           1
test_msgpack_unpackb[github]       289.8000 (1.44)     436.0000 (1.37)     314.9631 (1.44)     9.4130 (1.40)     315.1000 (1.44)     2.3000 (1.92)      341;557        3.1750 (0.70)       2477           1
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------- benchmark 'twitter packb': 2 tests ---------------------------------------------------------------------------------------
Name (time in us)                        Min                   Max                  Mean             StdDev                Median                IQR            Outliers         OPS            Rounds  Iterations
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_packb[twitter]       820.7000 (1.0)      2,945.2000 (2.03)       889.3791 (1.0)      78.4139 (2.43)       884.2000 (1.0)      12.5250 (1.0)          4;76  1,124.3799 (1.0)         809           1
test_msgpack_packb[twitter]       1,209.3000 (1.47)     1,451.2000 (1.0)      1,301.3615 (1.46)     32.2147 (1.0)      1,306.7000 (1.48)     14.1000 (1.13)      118;138    768.4260 (0.68)        592           1
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


------------------------------------------------------------------------------ benchmark 'twitter unpackb': 2 tests -----------------------------------------------------------------------------
Name (time in ms)                      Min                Max              Mean            StdDev            Median               IQR            Outliers       OPS            Rounds  Iterations
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_unpackb[twitter]     2.7097 (1.0)      41.1530 (1.0)      3.2721 (1.0)      3.5860 (1.03)     2.8868 (1.0)      0.0614 (1.32)         4;38  305.6098 (1.0)         314           1
test_msgpack_unpackb[twitter]       3.8079 (1.41)     42.0617 (1.02)     4.4459 (1.36)     3.4893 (1.0)      4.1097 (1.42)     0.0465 (1.0)          2;54  224.9267 (0.74)        228           1
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Reproducing

The above was measured using Python 3.7.9 on Azure Linux VM (x86_64) with ormsgpack 0.2.1 and msgpack 1.0.2.

The latency results can be reproduced using ./scripts/benchmark.sh and graphs using pytest --benchmark-histogram benchmarks/bench_*.

Questions

Why can't I install it from PyPI?

Probably pip needs to be upgraded to version 20.3 or later to support the latest manylinux_x_y or universal2 wheel formats.

Will it deserialize to dataclasses, UUIDs, decimals, etc or support object_hook?

No. This requires a schema specifying what types are expected and how to handle errors etc. This is addressed by data validation libraries a level above this.

Packaging

To package ormsgpack requires Rust 1.65 or newer and the maturin build tool. The default feature unstable-simd enables the usage of SIMD operations and requires nightly Rust. The recommended build command is:

maturin build --release --strip

ormsgpack is tested on Linux/amd64, Linux/aarch64, Linux/armv7, macOS/amd64 and Windows/amd64.

There are no runtime dependencies other than libc.

License

orjson was written by ijl <ijl@mailbox.org>, copyright 2018 - 2021, licensed under both the Apache 2 and MIT licenses.

ormsgpack was forked from orjson by Aviram Hassan and is now maintained by Emanuele Giaquinta (@exg), licensed same as orjson.

About

Msgpack serialization/deserialization library for Python, written in Rust using PyO3 and rust-msgpack. Reboot of orjson. msgpack.org[Python]

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Rust 60.1%
  • Python 39.6%
  • Shell 0.3%