|
152 | 152 | "np.array(rank_2_tensor)" |
153 | 153 | ] |
154 | 154 | }, |
| 155 | + { |
| 156 | + "cell_type": "code", |
| 157 | + "execution_count": 9, |
| 158 | + "metadata": {}, |
| 159 | + "outputs": [ |
| 160 | + { |
| 161 | + "data": { |
| 162 | + "text/plain": [ |
| 163 | + "array([[1., 2.],\n", |
| 164 | + " [3., 4.],\n", |
| 165 | + " [5., 6.]], dtype=float16)" |
| 166 | + ] |
| 167 | + }, |
| 168 | + "execution_count": 9, |
| 169 | + "metadata": {}, |
| 170 | + "output_type": "execute_result" |
| 171 | + } |
| 172 | + ], |
| 173 | + "source": [ |
| 174 | + "rank_2_tensor.numpy()" |
| 175 | + ] |
| 176 | + }, |
| 177 | + { |
| 178 | + "cell_type": "code", |
| 179 | + "execution_count": 27, |
| 180 | + "metadata": {}, |
| 181 | + "outputs": [ |
| 182 | + { |
| 183 | + "name": "stdout", |
| 184 | + "output_type": "stream", |
| 185 | + "text": [ |
| 186 | + "tf.Tensor(\n", |
| 187 | + "[[ 6 8]\n", |
| 188 | + " [10 12]], shape=(2, 2), dtype=int32) \n", |
| 189 | + "\n", |
| 190 | + "tf.Tensor(\n", |
| 191 | + "[[-4 -4]\n", |
| 192 | + " [-4 -4]], shape=(2, 2), dtype=int32) \n", |
| 193 | + "\n", |
| 194 | + "tf.Tensor(\n", |
| 195 | + "[[ 5 12]\n", |
| 196 | + " [21 32]], shape=(2, 2), dtype=int32) \n", |
| 197 | + "\n", |
| 198 | + "tf.Tensor(\n", |
| 199 | + "[[0.2 0.33333333]\n", |
| 200 | + " [0.42857143 0.5 ]], shape=(2, 2), dtype=float64) \n", |
| 201 | + "\n", |
| 202 | + "tf.Tensor(\n", |
| 203 | + "[[19 22]\n", |
| 204 | + " [43 50]], shape=(2, 2), dtype=int32) \n", |
| 205 | + "\n" |
| 206 | + ] |
| 207 | + } |
| 208 | + ], |
| 209 | + "source": [ |
| 210 | + "#张量通常包含浮点型和整型数据,但是还有许多其他数据类型,包括:\n", |
| 211 | + "#复杂的数值\n", |
| 212 | + "#字符串\n", |
| 213 | + "#您可以对张量执行基本数学运算,包括加法、逐元素乘法和矩阵乘法。\n", |
| 214 | + "\n", |
| 215 | + "a = tf.constant([\n", |
| 216 | + " [1,2],\n", |
| 217 | + " [3,4]\n", |
| 218 | + "],dtype=tf.int32)\n", |
| 219 | + "\n", |
| 220 | + "b = tf.constant([\n", |
| 221 | + " [5,6],\n", |
| 222 | + " [7,8]\n", |
| 223 | + "],dtype=tf.int32)\n", |
| 224 | + "\n", |
| 225 | + "\n", |
| 226 | + "print(tf.add(a,b),\"\\n\")\n", |
| 227 | + "print(tf.subtract(a,b),\"\\n\")\n", |
| 228 | + "print(tf.multiply(a,b),\"\\n\")\n", |
| 229 | + "print(tf.divide(a,b),\"\\n\")\n", |
| 230 | + "print(tf.matmul(a,b),\"\\n\")\n" |
| 231 | + ] |
| 232 | + }, |
| 233 | + { |
| 234 | + "cell_type": "code", |
| 235 | + "execution_count": 45, |
| 236 | + "metadata": {}, |
| 237 | + "outputs": [ |
| 238 | + { |
| 239 | + "name": "stdout", |
| 240 | + "output_type": "stream", |
| 241 | + "text": [ |
| 242 | + "tf.Tensor(10.0, shape=(), dtype=float32) \n", |
| 243 | + "\n", |
| 244 | + "tf.Tensor([ 5. 10.], shape=(2,), dtype=float32) \n", |
| 245 | + "\n", |
| 246 | + "tf.Tensor([ 6. 7. 8. 9. 10.], shape=(5,), dtype=float32) \n", |
| 247 | + "\n", |
| 248 | + "tf.Tensor([1 1 1 1 1], shape=(5,), dtype=int64) \n", |
| 249 | + "\n", |
| 250 | + "tf.Tensor([4 4], shape=(2,), dtype=int64) \n", |
| 251 | + "\n", |
| 252 | + "tf.Tensor(\n", |
| 253 | + "[[0.01165623 0.03168492 0.08612853 0.23412165 0.63640857]\n", |
| 254 | + " [0.01165623 0.03168492 0.08612853 0.23412165 0.63640857]], shape=(2, 5), dtype=float32)\n" |
| 255 | + ] |
| 256 | + } |
| 257 | + ], |
| 258 | + "source": [ |
| 259 | + "#各种运算都可以使用张量。\n", |
| 260 | + "#tf.reduce_max 是 TensorFlow 中的一个函数,用于计算张量(tensor)中的最大值。它可以沿着张量的一个或多个维度进行操作。\n", |
| 261 | + "a = tf.constant([\n", |
| 262 | + " [1,2,3,4,5],\n", |
| 263 | + " [6,7,8,9,10]\n", |
| 264 | + "],dtype=tf.float32)\n", |
| 265 | + "\n", |
| 266 | + "# Find the largest value\n", |
| 267 | + "print(tf.reduce_max(a),\"\\n\") #全局最大值\n", |
| 268 | + "print(tf.reduce_max(a,axis=1),\"\\n\") #1轴/行最大值\n", |
| 269 | + "print(tf.reduce_max(a,axis=0),\"\\n\") #0轴/列最大值\n", |
| 270 | + "\n", |
| 271 | + "# Find the index of the largest value\n", |
| 272 | + "print(tf.math.argmax(a,0),\"\\n\") #每列最大值索引\n", |
| 273 | + "print(tf.math.argmax(a,1),\"\\n\") #行最大值索引\n", |
| 274 | + "\n", |
| 275 | + "# Compute the softmax\n", |
| 276 | + "#tf.nn.softmax 函数用于计算张量中每个元素的 softmax 激活值。\n", |
| 277 | + "#Softmax 函数将输入的张量转换为一个新的张量,其中每个元素的取值范围在 0 到 1 之间,并且所有元素之和为 1。这使得 softmax 激活函数特别适合用于多分类问题中的输出层,其中每个输出节点表示一个类别的概率。\n", |
| 278 | + "print(tf.nn.softmax(a))" |
| 279 | + ] |
| 280 | + }, |
| 281 | + { |
| 282 | + "cell_type": "code", |
| 283 | + "execution_count": 48, |
| 284 | + "metadata": {}, |
| 285 | + "outputs": [ |
| 286 | + { |
| 287 | + "data": { |
| 288 | + "text/plain": [ |
| 289 | + "<tf.Tensor: shape=(3, 2, 4, 5), dtype=float32, numpy=\n", |
| 290 | + "array([[[[0., 0., 0., 0., 0.],\n", |
| 291 | + " [0., 0., 0., 0., 0.],\n", |
| 292 | + " [0., 0., 0., 0., 0.],\n", |
| 293 | + " [0., 0., 0., 0., 0.]],\n", |
| 294 | + "\n", |
| 295 | + " [[0., 0., 0., 0., 0.],\n", |
| 296 | + " [0., 0., 0., 0., 0.],\n", |
| 297 | + " [0., 0., 0., 0., 0.],\n", |
| 298 | + " [0., 0., 0., 0., 0.]]],\n", |
| 299 | + "\n", |
| 300 | + "\n", |
| 301 | + " [[[0., 0., 0., 0., 0.],\n", |
| 302 | + " [0., 0., 0., 0., 0.],\n", |
| 303 | + " [0., 0., 0., 0., 0.],\n", |
| 304 | + " [0., 0., 0., 0., 0.]],\n", |
| 305 | + "\n", |
| 306 | + " [[0., 0., 0., 0., 0.],\n", |
| 307 | + " [0., 0., 0., 0., 0.],\n", |
| 308 | + " [0., 0., 0., 0., 0.],\n", |
| 309 | + " [0., 0., 0., 0., 0.]]],\n", |
| 310 | + "\n", |
| 311 | + "\n", |
| 312 | + " [[[0., 0., 0., 0., 0.],\n", |
| 313 | + " [0., 0., 0., 0., 0.],\n", |
| 314 | + " [0., 0., 0., 0., 0.],\n", |
| 315 | + " [0., 0., 0., 0., 0.]],\n", |
| 316 | + "\n", |
| 317 | + " [[0., 0., 0., 0., 0.],\n", |
| 318 | + " [0., 0., 0., 0., 0.],\n", |
| 319 | + " [0., 0., 0., 0., 0.],\n", |
| 320 | + " [0., 0., 0., 0., 0.]]]], dtype=float32)>" |
| 321 | + ] |
| 322 | + }, |
| 323 | + "execution_count": 48, |
| 324 | + "metadata": {}, |
| 325 | + "output_type": "execute_result" |
| 326 | + } |
| 327 | + ], |
| 328 | + "source": [ |
| 329 | + "##张量有形状。下面是几个相关术语:\n", |
| 330 | + "\n", |
| 331 | + "#形状:张量的每个轴的长度(元素数量)。\n", |
| 332 | + "#秩:张量轴数。标量的秩为 0,向量的秩为 1,矩阵的秩为 2。\n", |
| 333 | + "#轴或维度:张量的一个特殊维度。\n", |
| 334 | + "#大小:张量的总项数,即形状矢量元素的乘积\n", |
| 335 | + "#注:虽然您可能会看到“二维张量”之类的表述,但 2 秩张量通常并不是用来描述二维空间。\n", |
| 336 | + "\n", |
| 337 | + "rank_4_tensor = tf.zeros([3,2,4,5])\n", |
| 338 | + "rank_4_tensor" |
| 339 | + ] |
| 340 | + }, |
| 341 | + { |
| 342 | + "cell_type": "code", |
| 343 | + "execution_count": 49, |
| 344 | + "metadata": {}, |
| 345 | + "outputs": [ |
| 346 | + { |
| 347 | + "name": "stdout", |
| 348 | + "output_type": "stream", |
| 349 | + "text": [ |
| 350 | + "Type of every element: <dtype: 'float32'>\n", |
| 351 | + "Number of axes: 4\n", |
| 352 | + "Shape of tensor: (3, 2, 4, 5)\n", |
| 353 | + "Elements along axis 0 of tensor: 3\n", |
| 354 | + "Elements along the last axis of tensor: 5\n", |
| 355 | + "Total number of elements (3*2*4*5): 120\n" |
| 356 | + ] |
| 357 | + } |
| 358 | + ], |
| 359 | + "source": [ |
| 360 | + "print(\"Type of every element:\", rank_4_tensor.dtype)\n", |
| 361 | + "print(\"Number of axes:\", rank_4_tensor.ndim)\n", |
| 362 | + "print(\"Shape of tensor:\", rank_4_tensor.shape)\n", |
| 363 | + "print(\"Elements along axis 0 of tensor:\", rank_4_tensor.shape[0])\n", |
| 364 | + "print(\"Elements along the last axis of tensor:\", rank_4_tensor.shape[-1])\n", |
| 365 | + "print(\"Total number of elements (3*2*4*5): \", tf.size(rank_4_tensor).numpy())" |
| 366 | + ] |
| 367 | + }, |
| 368 | + { |
| 369 | + "cell_type": "code", |
| 370 | + "execution_count": 52, |
| 371 | + "metadata": {}, |
| 372 | + "outputs": [ |
| 373 | + { |
| 374 | + "name": "stdout", |
| 375 | + "output_type": "stream", |
| 376 | + "text": [ |
| 377 | + "tf.Tensor(4, shape=(), dtype=int32) \n", |
| 378 | + "\n", |
| 379 | + "tf.Tensor([3 2 4 5], shape=(4,), dtype=int32) \n", |
| 380 | + "\n" |
| 381 | + ] |
| 382 | + } |
| 383 | + ], |
| 384 | + "source": [ |
| 385 | + "#但请注意,Tensor.ndim 和 Tensor.shape 特性不返回 Tensor 对象。如果您需要 Tensor,请使用 tf.rank 或 tf.shape 函数。这种差异不易察觉,但在构建计算图时(稍后)可能非常重要。\n", |
| 386 | + "print(tf.rank(rank_4_tensor),'\\n')\n", |
| 387 | + "print(tf.shape(rank_4_tensor),'\\n')" |
| 388 | + ] |
| 389 | + }, |
155 | 390 | { |
156 | 391 | "cell_type": "code", |
157 | 392 | "execution_count": null, |
158 | 393 | "metadata": {}, |
159 | 394 | "outputs": [], |
160 | | - "source": [] |
| 395 | + "source": [ |
| 396 | + "#虽然通常用索引来指代轴,但是您始终要记住每个轴的含义。轴一般按照从全局到局部的顺序进行排序:首先是批次轴,随后是空间维度,最后是每个位置的特征。这样,在内存中,特征向量就会位于连续的区域。\n", |
| 397 | + "# https://tensorflow.google.cn/guide/tensor?hl=zh-cn 结合2个图理解\n", |
| 398 | + "# 3 2 4 5\n", |
| 399 | + "# 3 - Batch\n", |
| 400 | + "# 2 - Height\n", |
| 401 | + "# 4 - Width\n", |
| 402 | + "# 5 - Features" |
| 403 | + ] |
161 | 404 | } |
162 | 405 | ], |
163 | 406 | "metadata": { |
|
0 commit comments