|
1 | 1 | # 深度学习入门指南 |
2 | 2 | 基于TensorFlow2 + Keras讲解深度学习入门指南。 |
3 | 3 |
|
| 4 | +## 注意 |
| 5 | +如果通过Github站内超链接打开Jupyter Notebook文件发生错误,可以点击根据 https://nbviewer.org 生成的“备用链接”间接访问对应文件。 |
| 6 | +或者通过以下链接访问整个项目的站外备用链接,注意点击站外备用链接里的非Jupyter Notebook格式文件会跳转回到Github仓库内: |
| 7 | +● [**Deep_Learning_TensorFlow2_Examples**](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/tree/master/) |
| 8 | + |
| 9 | + |
4 | 10 | ## 张量 |
5 | | -● [张量](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/01_TensorFlow_basics/01_01_Tensors.ipynb) |
6 | | -● [变量](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/01_TensorFlow_basics/01_02_Variables.ipynb) |
7 | | -● [自动微分](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/01_TensorFlow_basics/01_03_Automatic_differentiation.ipynb) |
| 11 | +● [**张量**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/01_TensorFlow_basics/01_01_Tensors.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/01_TensorFlow_basics/01_01_Tensors.ipynb)] |
| 12 | +● [**变量**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/01_TensorFlow_basics/01_02_Variables.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/01_TensorFlow_basics/01_02_Variables.ipynb)] |
| 13 | +● [**自动微分**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/01_TensorFlow_basics/01_03_Automatic_differentiation.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/01_TensorFlow_basics/01_03_Automatic_differentiation.ipynb)] |
8 | 14 | ● 图和函数简介 |
9 | | -● [模块、层和模型简介](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/01_TensorFlow_basics/01_05_Modules_layers_and_models.ipynb) |
10 | | -● [训练循环](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/01_TensorFlow_basics/01_06_Training_loops.ipynb) |
| 15 | +● [**模块、层和模型简介**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/01_TensorFlow_basics/01_05_Modules_layers_and_models.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/01_TensorFlow_basics/01_05_Modules_layers_and_models.ipynb)] |
| 16 | +● [**训练循环**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/01_TensorFlow_basics/01_06_Training_loops.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/01_TensorFlow_basics/01_06_Training_loops.ipynb)] |
11 | 17 | ● 高级自动微分 |
12 | 18 | ● 不规则张量 |
13 | | -● [稀疏张量](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/04_TensorFlow_in_depth/04_04_Sparse_tensor.ipynb) |
| 19 | +● [**稀疏张量**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/04_TensorFlow_in_depth/04_04_Sparse_tensor.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/04_TensorFlow_in_depth/04_04_Sparse_tensor.ipynb)] |
14 | 20 | ● Numpy API |
15 | 21 | ● Tensor切片 |
16 | 22 |
|
17 | 23 | ## Keras |
18 | | -● [Sequential模型](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/02_Keras/02_01_The_sequential_model.ipynb) |
19 | | -● [Functional API](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/02_Keras/02_02_The_functional_API.ipynb) |
20 | | -● [使用内置方法进行训练和评估](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/02_Keras/02_03_Training_evaluation_with_the_built_in_methods.ipynb) |
| 24 | +● [**Sequential模型**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/02_Keras/02_01_The_sequential_model.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/02_Keras/02_01_The_sequential_model.ipynb)] |
| 25 | +● [**Functional API**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/02_Keras/02_02_The_functional_API.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/02_Keras/02_02_The_functional_API.ipynb)] |
| 26 | +● [**使用内置方法进行训练和评估**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/02_Keras/02_03_Training_evaluation_with_the_built_in_methods.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/02_Keras/02_03_Training_evaluation_with_the_built_in_methods.ipynb)] |
21 | 27 | ● 通过子类化构建新层和模型 |
22 | | -● [保存并加载Keras模型](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/02_Keras/02_05_Serialization_and_saving.ipynb) |
23 | | -● [使用预处理层](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/02_Keras/02_07_Working_with_preprocessing_layers.ipynb) |
24 | | -● [自定义Model.fit的操作流程](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/02_Keras/02_08_Customizing_what_happens_in_fit.ipynb) |
25 | | -● [从头开始编写训练循环](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/02_Keras/02_09_Writing_a_training_loop_from_scratch.ipynb) |
| 28 | +● [**保存并加载Keras模型**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/02_Keras/02_05_Serialization_and_saving.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/02_Keras/02_05_Serialization_and_saving.ipynb)] |
| 29 | +● [**使用预处理层**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/02_Keras/02_07_Working_with_preprocessing_layers.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/02_Keras/02_07_Working_with_preprocessing_layers.ipynb)] |
| 30 | +● [**自定义Model.fit的操作流程**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/02_Keras/02_08_Customizing_what_happens_in_fit.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/02_Keras/02_08_Customizing_what_happens_in_fit.ipynb)] |
| 31 | +● [**从头开始编写训练循环**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/02_Keras/02_09_Writing_a_training_loop_from_scratch.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/02_Keras/02_09_Writing_a_training_loop_from_scratch.ipynb)] |
26 | 32 | ● 采用Keras的循环神经网络(RNN) |
27 | | -● [采用Keras进行遮盖和填充](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/02_Keras/02_11_Understading_masking_and_padding.ipynb) |
| 33 | +● [**采用Keras进行遮盖和填充**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/02_Keras/02_11_Understading_masking_and_padding.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/02_Keras/02_11_Understading_masking_and_padding.ipynb)] |
28 | 34 | ● 自动编写回调 |
29 | 35 | ● 迁移学习和微调 |
30 | 36 | ● 使用TensorFlow Cloud训练Keras模型 |
31 | 37 |
|
32 | 38 | ## TensorFlow Core |
33 | | -● [TensorFlow Core API 快速入门](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/03_Build_with_Core/03_01_Quickstart_for_core.ipynb) |
34 | | -● [使用 Core API 进行二元分类的逻辑回归](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/03_Build_with_Core/03_02_Logistic_regression.ipynb) |
| 39 | +● [**TensorFlow Core API 快速入门**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/03_Build_with_Core/03_01_Quickstart_for_core.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/03_Build_with_Core/03_01_Quickstart_for_core.ipynb)] |
| 40 | +● [**使用 Core API 进行二元分类的逻辑回归**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/03_Build_with_Core/03_02_Logistic_regression.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/03_Build_with_Core/03_02_Logistic_regression.ipynb)] |
35 | 41 |
|
36 | 42 | ## 自定义 |
37 | 43 | ● 创建操作 |
38 | 44 | ● 生成随机数字 |
39 | 45 |
|
40 | 46 | ## 数据输入流水线 |
41 | | -● [tf.data](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/06_Data_input_pipelines/06_01_tfdata.ipynb) |
| 47 | +● [**tf.data**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/06_Data_input_pipelines/06_01_tfdata.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/06_Data_input_pipelines/06_01_tfdata.ipynb)] |
42 | 48 | ● 优化流水线性能 |
43 | 49 | ● 分析流水线性能 |
44 | 50 |
|
45 | 51 | ## 保存模型 |
46 | | -● [Checkpoint](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/07_Import_and_export/07_01_Checkpoint.ipynb) |
47 | | -● [SavedModel](https://github.com/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/07_Import_and_export/07_02_SaveModel.ipynb) |
| 52 | +● [**Checkpoint**](https://github.com/solidglue/TensorFlow2_Keras_Guide_API_Jupyter_Demo/blob/master/07_Import_and_export/07_01_Checkpoint.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/07_Import_and_export/07_01_Checkpoint.ipynb)] |
| 53 | +● [**SavedModel**](https://github.com/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/07_Import_and_export/07_02_SaveModel.ipynb) [~~*(备用链接)*~~](https://nbviewer.org/github/solidglue/Deep_Learning_TensorFlow2_Examples/blob/master/07_Import_and_export/07_02_SaveModel.ipynb)] |
48 | 54 |
|
49 | 55 | ## 加速器 |
50 | 56 | ● 分布式训练 |
|
65 | 71 | ● 高级模型服务器配置 |
66 | 72 |
|
67 | 73 |
|
| 74 | +## 扩展 |
| 75 | +基于TensorFlow2实现YouTuBe推荐系统排序模型 - 以"DNN_for_YouTube_Recommendations"模型和电影评分数据集(ml-1m)为基础,详尽的展示了如何基于TensorFlow2训练推荐系统排序模型。 |
| 76 | +● [**YouTube深度排序模型(多值embedding、多目标学习)**](https://github.com/solidglue/DNN_for_YouTube_Recommendations) |
68 | 77 |
|
69 | 78 |
|
70 | 79 |
|
|
0 commit comments