Skip to content

Detection of suspicious tweets in order to identify compromised accounts.

Notifications You must be signed in to change notification settings

soldag/SMM-CompromisedAccountDetection

Repository files navigation

SMM-CompromisedAccountDetection

Setup

Python packages

You have to install the required packages using pip:

pip install -r requirements.txt

NLTK Data

The application additionally needs the following NLTK data packages:

  • punkt - Punkt Tokenizer Models

For installation instructions please visit http://www.nltk.org/data.html.

Usage

Command Line Interface

python cli.py [options]

Options

Required arguments
  • -t / --provider-type DATA_PROVIDER_TYPE The type of the specified data provider, which supplies the status updates.
  • -c / --classifier-type CLASSIFIER_TYPE The type of the classifier to be trained. (currently only decision_tree)
Data provider dependent arguments
File-based data providers (fth or mp)
  • --dataset-path FILE_PATH The path of the CSV dataset, which contains the status updates.
Twitter provider (twitter)
  • --twitter-user TWITTER_USER_ID The id of the twitter user, whose status updates should be analyzed.
Optional arguments
  • -n / --experiments-count NUMBER_OF_EXPERIMENTS The number of experiments to run. (default: 10)

Web App

./run_app_dev.sh

About

Detection of suspicious tweets in order to identify compromised accounts.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •