-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain.py
165 lines (134 loc) · 4.89 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
import argparse
import cv2
import numpy as np
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from siamese import SiameseNetwork
from libs.dataset import Dataset
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'--train_path',
type=str,
help="Path to directory containing training dataset.",
required=True
)
parser.add_argument(
'--val_path',
type=str,
help="Path to directory containing validation dataset.",
required=True
)
parser.add_argument(
'-o',
'--out_path',
type=str,
help="Path for outputting model weights and tensorboard summary.",
required=True
)
parser.add_argument(
'-b',
'--backbone',
type=str,
help="Network backbone from torchvision.models to be used in the siamese network.",
default="resnet18"
)
parser.add_argument(
'-lr',
'--learning_rate',
type=float,
help="Learning Rate",
default=1e-4
)
parser.add_argument(
'-e',
'--epochs',
type=int,
help="Number of epochs to train",
default=1000
)
parser.add_argument(
'-s',
'--save_after',
type=int,
help="Model checkpoint is saved after each specified number of epochs.",
default=25
)
args = parser.parse_args()
os.makedirs(args.out_path, exist_ok=True)
# Set device to CUDA if a CUDA device is available, else CPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train_dataset = Dataset(args.train_path, shuffle_pairs=True, augment=True)
val_dataset = Dataset(args.val_path, shuffle_pairs=False, augment=False)
train_dataloader = DataLoader(train_dataset, batch_size=8, drop_last=True)
val_dataloader = DataLoader(val_dataset, batch_size=8)
model = SiameseNetwork(backbone=args.backbone)
model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
criterion = torch.nn.BCELoss()
writer = SummaryWriter(os.path.join(args.out_path, "summary"))
best_val = 10000000000
for epoch in range(args.epochs):
print("[{} / {}]".format(epoch, args.epochs))
model.train()
losses = []
correct = 0
total = 0
# Training Loop Start
for (img1, img2), y, (class1, class2) in train_dataloader:
img1, img2, y = map(lambda x: x.to(device), [img1, img2, y])
prob = model(img1, img2)
loss = criterion(prob, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
losses.append(loss.item())
correct += torch.count_nonzero(y == (prob > 0.5)).item()
total += len(y)
writer.add_scalar('train_loss', sum(losses)/len(losses), epoch)
writer.add_scalar('train_acc', correct / total, epoch)
print("\tTraining: Loss={:.2f}\t Accuracy={:.2f}\t".format(sum(losses)/len(losses), correct / total))
# Training Loop End
# Evaluation Loop Start
model.eval()
losses = []
correct = 0
total = 0
for (img1, img2), y, (class1, class2) in val_dataloader:
img1, img2, y = map(lambda x: x.to(device), [img1, img2, y])
prob = model(img1, img2)
loss = criterion(prob, y)
losses.append(loss.item())
correct += torch.count_nonzero(y == (prob > 0.5)).item()
total += len(y)
val_loss = sum(losses)/max(1, len(losses))
writer.add_scalar('val_loss', val_loss, epoch)
writer.add_scalar('val_acc', correct / total, epoch)
print("\tValidation: Loss={:.2f}\t Accuracy={:.2f}\t".format(val_loss, correct / total))
# Evaluation Loop End
# Update "best.pth" model if val_loss in current epoch is lower than the best validation loss
if val_loss < best_val:
best_val = val_loss
torch.save(
{
"epoch": epoch + 1,
"model_state_dict": model.state_dict(),
"backbone": args.backbone,
"optimizer_state_dict": optimizer.state_dict()
},
os.path.join(args.out_path, "best.pth")
)
# Save model based on the frequency defined by "args.save_after"
if (epoch + 1) % args.save_after == 0:
torch.save(
{
"epoch": epoch + 1,
"model_state_dict": model.state_dict(),
"backbone": args.backbone,
"optimizer_state_dict": optimizer.state_dict()
},
os.path.join(args.out_path, "epoch_{}.pth".format(epoch + 1))
)