-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathselection.py
530 lines (506 loc) · 17.5 KB
/
selection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
from dataclasses import dataclass
from typing import List, Tuple
import pandas as pd
import polars as pl
from sklearn.utils import Bunch
from caumim.constants import (
COLNAME_CODE,
COLNAME_DOMAIN,
COLNAME_END,
COLNAME_HADM_ID,
COLNAME_PATIENT_ID,
COLNAME_START,
COLNAMES_EVENTS,
COLNAME_ICUSTAY_ID,
COLNAME_LABEL,
COLNAME_VALUE,
DIR2MIMIC,
DIR2RESOURCES,
)
from caumim.variables.utils import (
get_antibiotics_event_from_atc4,
get_antibiotics_event_from_drug_name,
get_measurement_from_mimic_concept_tables,
restrict_event_to_observation_period,
)
from caumim.utils import to_lazyframe, to_polars
from joblib import Memory
location = "./cachedir"
memory = Memory(location, verbose=0)
@dataclass
class VariableTypes:
binary_features: List[str] = None
categorical_features: List[str] = None
numerical_features: List[str] = None
@memory.cache()
def get_comorbidity(
target_trial_population: pl.DataFrame,
) -> Tuple[pl.DataFrame, VariableTypes]:
"""These comorbidities are computed [from icd codes](https://github.com/MIT-LCP/mimic-code/blob/main/mimic-iv/concepts/comorbidity/charlson.sql)"""
comorbidities = pl.scan_parquet(DIR2MIMIC / "mimiciv_derived.charlson/")
index_cols = [
COLNAME_PATIENT_ID,
COLNAME_HADM_ID,
COLNAME_ICUSTAY_ID,
"dischtime",
]
comorbidities_filtered = comorbidities.join(
to_lazyframe(target_trial_population).select(index_cols),
on=[COLNAME_PATIENT_ID, COLNAME_HADM_ID],
how="inner",
)
# only keep non null diagnosis
comorbidities_event = (
comorbidities_filtered.melt(
id_vars=index_cols,
value_vars=[
"myocardial_infarct",
"congestive_heart_failure",
"peripheral_vascular_disease",
"cerebrovascular_disease",
"dementia",
"chronic_pulmonary_disease",
"rheumatic_disease",
"peptic_ulcer_disease",
"mild_liver_disease",
"diabetes_without_cc",
"diabetes_with_cc",
"paraplegia",
"renal_disease",
"malignant_cancer",
"severe_liver_disease",
"metastatic_solid_tumor",
"aids",
"charlson_comorbidity_index",
],
variable_name=COLNAME_CODE,
value_name=COLNAME_VALUE,
)
.filter(
(pl.col(COLNAME_VALUE) != 0)
| (pl.col(COLNAME_CODE) == "charlson_comorbidity_index")
)
.rename({"dischtime": COLNAME_START})
.collect()
.with_columns(
pl.lit("condition").alias(COLNAME_DOMAIN),
pl.lit("charlson_comorbidity_index").alias(COLNAME_LABEL),
pl.col(COLNAME_START).alias(COLNAME_END),
pl.col(COLNAME_VALUE).cast(pl.Float64).alias(COLNAME_VALUE),
)
)
# Add feature types
feature_types = VariableTypes(
binary_features=comorbidities_event[COLNAME_CODE].unique().to_list(),
)
return comorbidities_event, feature_types
@memory.cache()
def get_event_covariates_albumin_zhou(
target_trial_population: pl.DataFrame,
) -> Tuple[pl.DataFrame, VariableTypes]:
"""Get the baseline variables from the [Zhou et al.,2021](https://link.springer.com/article/10.1186/s13613-021-00830-8)
paper.
Returns:
pl.DataFrame: Events in the observation period (before followup), for
the target trial population.
"""
# Describe baseline caracteristics
event_list = []
# 1 - antibiotics
# antibiotic_atc4 = {
# "Carbapenems": ["J01DH"],
# "Glycopeptide": ["J01XA"],
# "Beta-lactams": [
# "J01CA", # penicillins
# "J01CE" # "Beta-lactamase-sensitive penicillins",
# "J01CF", # "Beta-lactamase-resistant penicillins",
# "J01CG", # "Beta-lactamase inihibitors",
# "J01CR", # "Combinations of penicillins, incl. beta-lactamase inhibitors",
# ],
# "Aminoglycosides": [
# "J01GA", # Aminoglycosides - Streptomycins
# "J01GB", # "Aminoglycosides - Other aminoglycosides"
# ],
# }
antibiotic_str = {
"Carbapenems": ["meropenem"],
"Glycopeptide": ["vancomycin"],
"Beta-lactams": ["ceftriaxone", "cefotaxime", "cefepime"],
"Aminoglycosides": ["gentamicin", "amikacin"],
}
antibiotics_event = get_antibiotics_event_from_drug_name(
antibiotic_str
) # get_antibiotics_event_from_atc4(antibiotic_atc.keys())
# map to ATC4 or ATC3 depending on the antibiotics
antibiotics_event_renamed_for_study = antibiotics_event.with_columns(
[
pl.when(pl.col(COLNAME_CODE).str.starts_with("J01C"))
.then("J01C")
.when(pl.col(COLNAME_CODE).str.starts_with("J01G"))
.then("J01G")
.otherwise(pl.col(COLNAME_CODE))
.alias(COLNAME_CODE),
pl.when(pl.col(COLNAME_CODE).str.starts_with("J01C"))
.then("Beta-lactams")
.when(pl.col(COLNAME_CODE).str.starts_with("J01G"))
.then("Aminoglycosides")
.otherwise(pl.col(COLNAME_LABEL))
.alias(COLNAME_LABEL),
pl.col("stoptime").dt.cast_time_unit("ns").alias(COLNAME_END),
pl.col(COLNAME_START).dt.cast_time_unit("ns").alias(COLNAME_START),
],
)
event_list.append(
restrict_event_to_observation_period(
target_trial_population=target_trial_population,
event=antibiotics_event_renamed_for_study,
)
)
# 2 - Measurements
### 2.1 - Weight
weight_event = pl.scan_parquet(
DIR2MIMIC / "mimiciv_derived.weight_durations/"
).with_columns(
[
pl.lit("measurement").alias(COLNAME_DOMAIN),
pl.lit("Weight").alias(COLNAME_CODE),
pl.lit("Weight").alias(COLNAME_LABEL),
pl.col("weight").alias("value"),
]
)
event_list.append(
restrict_event_to_observation_period(
target_trial_population=target_trial_population,
event=weight_event,
)
)
### 2.2 - Vital signs:
vitalsign = pl.scan_parquet(DIR2MIMIC / "mimiciv_derived.vitalsign/")
# Respiratory Rate, Heart Rate, Mean Arterial Pressure, Temperature, SPO2
vital_signs_in_study = [
"resp_rate",
"heart_rate",
"mbp",
"temperature",
"spo2",
]
vital_signs_event = get_measurement_from_mimic_concept_tables(
measurement_concepts=vital_signs_in_study, measurement_table=vitalsign
)
event_list.append(
restrict_event_to_observation_period(
target_trial_population=target_trial_population,
event=vital_signs_event,
)
)
### 2.3 - Other measurements
# lactate,
blood_gaz_list = ["lactate"]
blood_gaz = pl.scan_parquet(DIR2MIMIC / "mimiciv_derived.bg/")
blood_gaz_event = get_measurement_from_mimic_concept_tables(
measurement_concepts=blood_gaz_list, measurement_table=blood_gaz
)
event_list.append(
restrict_event_to_observation_period(
target_trial_population=target_trial_population,
event=blood_gaz_event,
)
)
# urine outputs
urine_output_list = ["urineoutput"]
urine_output = pl.scan_parquet(DIR2MIMIC / "mimiciv_derived.urine_output/")
urine_output_event = get_measurement_from_mimic_concept_tables(
measurement_concepts=urine_output_list, measurement_table=urine_output
)
event_list.append(
restrict_event_to_observation_period(
target_trial_population=target_trial_population,
event=urine_output_event,
)
)
### 2.4 - Scores
# Saps2 mimic_derived.sapsii(computed on the first day, so might be a colider)
sapsii_event = (
pl.scan_parquet(DIR2MIMIC / "mimiciv_derived.sapsii/")
.select(
[
COLNAME_PATIENT_ID,
COLNAME_HADM_ID,
COLNAME_ICUSTAY_ID,
COLNAME_START,
COLNAME_END,
"sapsii",
]
)
.with_columns(
pl.lit("measurement").alias(COLNAME_DOMAIN),
pl.lit("SAPSII").alias(COLNAME_CODE),
pl.lit("SAPSII").alias(COLNAME_LABEL),
pl.col("sapsii").alias("value"),
)
)
event_list.append(
restrict_event_to_observation_period(
target_trial_population=target_trial_population,
event=sapsii_event,
)
)
# Sofa, (computed on the first day, so might be a colider)
first_day_sofa_event = (
pl.scan_parquet(DIR2MIMIC / "mimiciv_derived.first_day_sofa/")
.select(
[COLNAME_PATIENT_ID, COLNAME_HADM_ID, COLNAME_ICUSTAY_ID, "sofa"]
)
.with_columns(
pl.lit("measurement").alias(COLNAME_DOMAIN),
pl.lit("SOFA").alias(COLNAME_CODE),
pl.lit("SOFA").alias(COLNAME_LABEL),
pl.col("sofa").alias("value"),
)
.join(
to_lazyframe(target_trial_population)
.select(
pl.col(COLNAME_ICUSTAY_ID),
pl.col("icu_intime").alias(COLNAME_START),
)
.with_columns(
(pl.duration(days=1) + pl.col(COLNAME_START)).alias(
COLNAME_END
),
),
on=COLNAME_ICUSTAY_ID,
how="inner",
)
)
event_list.append(
restrict_event_to_observation_period(
target_trial_population=target_trial_population,
event=first_day_sofa_event,
)
)
# AKI mimic_derived.kdigo_stages
kdigo_stages = pl.scan_parquet(DIR2MIMIC / "mimiciv_derived.kdigo_stages/")
kdigo_event = get_measurement_from_mimic_concept_tables(
measurement_concepts=["aki_stage"], measurement_table=kdigo_stages
)
event_list.append(
restrict_event_to_observation_period(
target_trial_population=target_trial_population,
event=kdigo_event,
)
)
# 3 - procedures: ventilator_setting, rrt
ventilation_event = pl.scan_parquet(
DIR2MIMIC / "mimiciv_derived.ventilation/"
).with_columns(
pl.lit("procedure").alias(COLNAME_DOMAIN),
pl.lit("ventilation").alias(COLNAME_CODE),
pl.lit("ventilation").alias(COLNAME_LABEL),
pl.lit(1).alias("value"),
)
event_list.append(
restrict_event_to_observation_period(
target_trial_population=target_trial_population,
event=ventilation_event,
)
)
rrt_event = pl.scan_parquet(
DIR2MIMIC / "mimiciv_derived.rrt/"
).with_columns(
pl.lit("procedure").alias(COLNAME_DOMAIN),
pl.col("charttime").alias(COLNAME_START),
pl.col("charttime").alias(COLNAME_END),
pl.lit("RRT").alias(COLNAME_CODE),
pl.col("dialysis_type").alias(COLNAME_LABEL),
pl.col("dialysis_active").alias(COLNAME_VALUE),
)
event_list.append(
restrict_event_to_observation_period(
target_trial_population=target_trial_population,
event=rrt_event,
)
)
# 4 - medications: vasopressors
vasopressors_str = [
"dopamine",
"epinephrine",
"norepinephrine",
"phenylephrine",
"vasopressin",
"dobutamine",
"milrinone",
]
vasopressors = pl.scan_parquet(
DIR2MIMIC / "mimiciv_derived.vasoactive_agent/"
).with_columns(
pl.col("starttime").alias("charttime"),
)
vasopressors_event = (
get_measurement_from_mimic_concept_tables(
measurement_concepts=vasopressors_str,
measurement_table=vasopressors,
)
.drop("domain")
.with_columns(
pl.lit("medication").alias(COLNAME_DOMAIN),
pl.lit("vasopressors").alias(COLNAME_CODE),
pl.when(pl.col(COLNAME_VALUE) > 0)
.then(1)
.otherwise(0)
.alias(COLNAME_VALUE),
)
)
event_list.append(
restrict_event_to_observation_period(
target_trial_population=target_trial_population,
event=vasopressors_event,
)
)
# 5 - other features:
# Suspected_infection_blood
suspicion_of_infection_event = (
pl.scan_parquet(DIR2MIMIC / "mimiciv_derived.suspicion_of_infection/")
.filter(
pl.col("specimen").str.to_lowercase().str.contains("blood")
& (pl.col("positive_culture") == 1)
)
.drop(COLNAME_ICUSTAY_ID)
.with_columns(
pl.lit("observation").alias(COLNAME_DOMAIN),
pl.lit("suspected_infection_blood").alias(COLNAME_CODE),
pl.lit("suspected_infection_blood").alias(COLNAME_LABEL),
pl.lit(1).alias("value"),
pl.col("suspected_infection_time").alias(COLNAME_START),
pl.col("suspected_infection_time").alias(COLNAME_END),
)
)
event_list.append(
restrict_event_to_observation_period(
target_trial_population=target_trial_population,
event=suspicion_of_infection_event,
)
)
# Get all features together
event_features = pl.concat(event_list).collect()
# Restrict to cohort and observation period (before inclusion start)
event_features = event_features.filter(~event_features.is_duplicated())
# Add feature types
feature_types = VariableTypes(
binary_features=[
"Glycopeptide", # J01XA
"Beta-lactams", # "J01C",
"Carbapenems", # "J01DH",
"Aminoglycosides", # "J01G",
"suspected_infection_blood",
"RRT",
"ventilation",
"vasopressors",
],
categorical_features=["aki_stage"],
numerical_features=[
"SOFA",
"SAPSII",
"Weight",
"temperature",
"mbp",
"resp_rate",
"heart_rate",
"spo2",
"lactate",
"urineoutput",
],
)
return event_features, feature_types
from caumim.utils import to_polars
def get_septic_shock_from_features(included_stays: pd.DataFrame):
"""
Create septic shock variable for a population of patients. Only features
belonging to the included stays and occuring before the end of the
observation period (specific to each patient) are considered.
Using the definition of septic
shock as of "The Third International Consensus Definitions for Sepsis and
Septic Shock (Sepsis-3)" (box 3)
- sepsis patient
- persisting hypotension requiring vasopressors to maintain MAP ≥65 mm Hg:
simplified to receiving vasopressors
- having a serum lactate level >2 mmol/L (18 mg/dL) despite adequate
volume resuscitation: simplified to lactate > 2 mmmol/L
Args:
target_trial_population (pd.DataFrame): _description_
Raises:
ValueError: _description_
"""
if not included_stays.columns:
raise ValueError(
"Target population should have an inclusion start column"
)
vasopressors_str = [
"dopamine",
"epinephrine",
"norepinephrine",
"phenylephrine",
"vasopressin",
"dobutamine",
"milrinone",
]
vasopressors = pl.scan_parquet(
DIR2MIMIC / "mimiciv_derived.vasoactive_agent/"
).with_columns(
pl.col("starttime").alias("charttime"),
)
# sepsis
sepsis3_stays = pl.read_parquet(DIR2MIMIC / "mimiciv_derived.sepsis3")
sepsis3_stays = sepsis3_stays.filter(pl.col("sepsis3") == True)
# vasopressors
vasopressors_event = (
get_measurement_from_mimic_concept_tables(
measurement_concepts=vasopressors_str,
measurement_table=vasopressors,
)
.drop("domain")
.with_columns(
pl.lit("medication").alias(COLNAME_DOMAIN),
pl.lit("vasopressors").alias(COLNAME_CODE),
pl.when(pl.col(COLNAME_VALUE) > 0)
.then(1)
.otherwise(0)
.alias(COLNAME_VALUE),
)
)
# lactate
blood_gaz_list = ["lactate"]
blood_gaz = pl.scan_parquet(DIR2MIMIC / "mimiciv_derived.bg/")
blood_gaz_event = get_measurement_from_mimic_concept_tables(
measurement_concepts=blood_gaz_list, measurement_table=blood_gaz
)
lactate_sup_2 = blood_gaz_event.filter(pl.col(COLNAME_VALUE) >= 2)
target_trial_population_septic = to_polars(included_stays).join(
sepsis3_stays.select([COLNAME_ICUSTAY_ID, COLNAME_PATIENT_ID]).unique(),
on=[COLNAME_ICUSTAY_ID, COLNAME_PATIENT_ID],
how="inner",
)
lactate_sup_2_restricted = restrict_event_to_observation_period(
target_trial_population_septic, lactate_sup_2
)
vasopressors_restricted = restrict_event_to_observation_period(
target_trial_population_septic, vasopressors_event
)
septic_shock_patient = (
(
vasopressors_restricted.select(COLNAME_PATIENT_ID)
.unique()
.join(
lactate_sup_2_restricted.select(COLNAME_PATIENT_ID).unique(),
how="inner",
on=COLNAME_PATIENT_ID,
)
)
.with_columns(pl.lit(1).alias("septic_shock"))
.collect()
)
included_stays_w_septic_shock = included_stays.join(
septic_shock_patient, on=COLNAME_PATIENT_ID, how="left"
)
return included_stays_w_septic_shock.with_columns(
pl.col("septic_shock").fill_null(0)
)