From 04192a51fed2403a7137c3d3565fac72d33175b8 Mon Sep 17 00:00:00 2001 From: AndreFCruz Date: Fri, 24 May 2024 18:17:05 +0200 Subject: [PATCH] updated notebook --- notebooks/experiments.ipynb | 8964 +++++++++++++++++------------------ 1 file changed, 4424 insertions(+), 4540 deletions(-) diff --git a/notebooks/experiments.ipynb b/notebooks/experiments.ipynb index 472298b..64ffa7e 100644 --- a/notebooks/experiments.ipynb +++ b/notebooks/experiments.ipynb @@ -9,7 +9,8 @@ "source": [ "import torch\n", "import numpy as np\n", - "import pandas as pd" + "import pandas as pd\n", + "from functools import partial" ] }, { @@ -22,7 +23,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "folktexts.__version__='0.0.2'\n" + "folktexts.__version__='0.0.3'\n" ] } ], @@ -57,8 +58,8 @@ "metadata": {}, "outputs": [], "source": [ - "LLM_CACHE_DIR = \"/Users/acruz/data/transformers-cache\"\n", - "# LLM_CACHE_DIR = \"/fast/acruz/huggingface-models\"\n", + "MODELS_DIR = \"/Users/acruz/data/huggingface-models/\"\n", + "# MODELS_DIR = \"/fast/acruz/huggingface-models\"\n", "\n", "# MODEL_NAME = \"gpt2\"\n", "# MODEL_NAME = \"google/gemma-1.1-2b-it\"\n", @@ -73,6 +74,29 @@ { "cell_type": "code", "execution_count": 5, + "id": "8b72ede8-ba08-40d0-8a9c-d05fd025054b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'/Users/acruz/data/huggingface-models/google--gemma-2b'" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from folktexts.llm_utils import get_model_folder_path\n", + "model_path = get_model_folder_path(MODEL_NAME, root_dir=MODELS_DIR)\n", + "model_path" + ] + }, + { + "cell_type": "code", + "execution_count": 6, "id": "280e5c90-2a9e-4d4c-8718-a0c74a3b4077", "metadata": {}, "outputs": [ @@ -87,51 +111,59 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4239819def974163a97c241b0e2904b8", + "model_id": "aa493b0fb4044fbcb5ab912d1d94ea49", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "Loading checkpoint shards: 0%| | 0/2 [00:00" + "" ] }, - "execution_count": 6, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "from folktexts.acs import ACSFolktablesDataset\n", + "from folktexts.acs import ACSDataset\n", "\n", - "acs_income_data = ACSFolktablesDataset(task_name=\"ACSIncome\", val_size=0, subsampling=0.001)\n", + "acs_income_data = ACSDataset(task_name=\"ACSIncome\", val_size=0, subsampling=0.001)\n", "acs_income_data" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "id": "cce983cb-da31-4930-ac4f-2b21da95d4f6", "metadata": {}, "outputs": [ @@ -139,7 +171,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "X_test.shape=(167, 10)\n" + "X_test.shape=(166, 10)\n" ] } ], @@ -150,15 +182,15 @@ }, { "cell_type": "code", - "execution_count": 8, - "id": "afff1e44-4d7d-40d5-85a7-47ebc2dfab50", + "execution_count": 9, + "id": "55f6154c-af0e-4d08-90fb-b2849ca35dc4", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "X_train.shape=(1497, 10)\n" + "X_train.shape=(1498, 10)\n" ] } ], @@ -185,22 +217,22 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "id": "687d9f5e-7c8e-4318-9b8a-000ae836879a", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "1062573 1\n", - "703768 1\n", - "1094545 1\n", - "865470 0\n", - "786195 0\n", + "248380 1\n", + "2431385 0\n", + "317712 1\n", + "1624450 0\n", + "951279 0\n", "Name: PINCP_binary, dtype: int64" ] }, - "execution_count": 9, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -216,33 +248,20 @@ }, { "cell_type": "code", - "execution_count": 10, - "id": "45b78b21-6e24-4802-b468-ea016734d179", + "execution_count": 11, + "id": "fe0ae852-e9cb-4593-8ba0-54ca379566d8", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "import importlib\n", - "import folktexts.prompting\n", - "import folktexts.decoding\n", - "importlib.reload(folktexts)\n", - "importlib.reload(folktexts.prompting)\n", - "importlib.reload(folktexts.decoding)" + "from folktexts.prompting import encode_row_prompt, encode_row_prompt_few_shot, encode_row_prompt_chat\n", + "# encode_row_func = encode_row_prompt # Regular encoding\n", + "# encode_row_func = partial(encode_row_prompt_chat, tokenizer=tokenizer) # Chat-style encoding\n", + "encode_row_func = partial(encode_row_prompt_few_shot, n_shots=3, reuse_examples=True) # Few-shot encoding" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "id": "ae9d5552-73d9-4f36-9419-026320137634", "metadata": {}, "outputs": [ @@ -250,19 +269,70 @@ "name": "stdout", "output_type": "stream", "text": [ - "The following data corresponds to a survey respondent. Please answer the question based on the information provided. The data provided is enough to reach an approximate answer.\n", + "The following data corresponds to different survey respondents. Please answer each question based on the information provided. The data provided is enough to reach an approximate answer for each person.\n", "\n", "Information:\n", - "- The age is 54 years old.\n", - "- The current employment status is working for a for-profit private company or organization.\n", + "- The age is 53 years old.\n", + "- The current employment status is owner of non-incorporated business, professional practice, or farm.\n", "- The highest grade completed is Bachelor's degree.\n", + "- The marital status is married.\n", + "- The occupation is musicians and singers.\n", + "- The place of birth is New York/NY.\n", + "- The relationship to the reference person in the household is the 'reference person' itself.\n", + "- The usual number of hours worked per week is 20 hours.\n", + "- The sex is Male.\n", + "- The race is White.\n", + "\n", + "Question: What is this person's estimated yearly income?\n", + "A. Below $50,000.\n", + "B. Above $50,000.\n", + "Answer: A\n", + "\n", + "Information:\n", + "- The age is 51 years old.\n", + "- The current employment status is working for a for-profit private company or organization.\n", + "- The highest grade completed is 11th grade.\n", + "- The marital status is married.\n", + "- The occupation is miscellaneous production workers, including equipment operators and tenders.\n", + "- The place of birth is Mexico.\n", + "- The relationship to the reference person in the household is the 'reference person' itself.\n", + "- The usual number of hours worked per week is 20 hours.\n", + "- The sex is Male.\n", + "- The race is White.\n", + "\n", + "Question: What is this person's estimated yearly income?\n", + "A. Below $50,000.\n", + "B. Above $50,000.\n", + "Answer: A\n", + "\n", + "Information:\n", + "- The age is 43 years old.\n", + "- The current employment status is working for a for-profit private company or organization.\n", + "- The highest grade completed is some college, 1 or more years, no degree.\n", "- The marital status is divorced.\n", - "- The occupation is software developers.\n", - "- The place of birth is Georgia/GA.\n", + "- The occupation is sales representatives of services, except advertising, insurance, financial services, and travel.\n", + "- The place of birth is Michigan/MI.\n", "- The relationship to the reference person in the household is the 'reference person' itself.\n", "- The usual number of hours worked per week is 40 hours.\n", "- The sex is Male.\n", - "- The race is White.\n", + "- The race is Two or more races.\n", + "\n", + "Question: What is this person's estimated yearly income?\n", + "A. Below $50,000.\n", + "B. Above $50,000.\n", + "Answer: B\n", + "\n", + "Information:\n", + "- The age is 71 years old.\n", + "- The current employment status is working for a for-profit private company or organization.\n", + "- The highest grade completed is some college, less than 1 year.\n", + "- The marital status is married.\n", + "- The occupation is driver/sales workers and truck drivers.\n", + "- The place of birth is California/CA.\n", + "- The relationship to the reference person in the household is husband/wife.\n", + "- The usual number of hours worked per week is 55 hours.\n", + "- The sex is Male.\n", + "- The race is Two or more races.\n", "\n", "Question: What is this person's estimated yearly income?\n", "A. Below $50,000.\n", @@ -272,10 +342,8 @@ } ], "source": [ - "from folktexts.prompting import encode_row_prompt\n", - "\n", "row_prompts = [\n", - " encode_row_prompt(row, dataset=acs_income_data)\n", + " encode_row_func(row, dataset=acs_income_data)\n", " for _, row in X_train.iterrows()\n", "]\n", "print(row_prompts[0], end=\"**\")" @@ -283,82 +351,26 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 13, "id": "b79e984b-e569-47f8-9aa5-f492e7bf9e30", "metadata": {}, "outputs": [ - { - "data": { - "text/plain": [ - "[1164, 1164, 1206, 1185, 1166]" - ] - }, - "execution_count": 44, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "[len(p) for p in full_prompts]" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "6abb70ce-325e-4cb7-b0c7-737c06e2a633", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "No chat template is defined for this tokenizer - using a default chat template that implements the ChatML format (without BOS/EOS tokens!). If the default is not appropriate for your model, please set `tokenizer.chat_template` to an appropriate template. See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n", - "\n" - ] - }, { "name": "stdout", "output_type": "stream", "text": [ - "<|im_start|>user\n", - "You are a helpful assistant. You answer multiple-choice questions based on the information provided. Your answer should start with a single letter representing the choice you think is correct. The data provided is enough to reach an approximate answer. Please answer with your best estimate.\n", - "\n", - "The following data corresponds to a survey respondent. Please answer the question based on the information provided. The data provided is enough to reach an approximate answer.\n", - "\n", - "Information:\n", - "- The age is 54 years old.\n", - "- The current employment status is working for a for-profit private company or organization.\n", - "- The highest grade completed is Bachelor's degree.\n", - "- The marital status is divorced.\n", - "- The occupation is software developers.\n", - "- The place of birth is Georgia/GA.\n", - "- The relationship to the reference person in the household is the 'reference person' itself.\n", - "- The usual number of hours worked per week is 40 hours.\n", - "- The sex is Male.\n", - "- The race is White.\n", - "\n", - "Question: What is this person's estimated yearly income?\n", - "A. Below $50,000.\n", - "B. Above $50,000.\n", - "Answer:<|im_end|>\n", - "<|im_start|>assistant\n", - "If had to select one of the options, my answer would be**" + "Prompts' token length: [720, 719, 715, 710, 710]\n" ] } ], "source": [ - "from folktexts.prompting import apply_chat_template, SYSTEM_PROMPT\n", - "full_prompts = [\n", - " apply_chat_template(tokenizer, SYSTEM_PROMPT + \"\\n\" + row_p, system_prompt=False)\n", - " for row_p in row_prompts\n", - "]\n", - "print(full_prompts[0], end=\"**\")" + "prompts_tok_len = [len(tokenizer.encode(p)) for p in row_prompts]\n", + "print(\"Prompts' token length:\", prompts_tok_len)" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "id": "2547bc6e-c400-4c8b-98ec-6ad05fc1a878", "metadata": {}, "outputs": [], @@ -383,7 +395,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "id": "7b299638-1f09-4d51-983d-52a1d6f76294", "metadata": {}, "outputs": [ @@ -391,22 +403,20 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 367 ms, sys: 1.92 s, total: 2.28 s\n", - "Wall time: 5.99 s\n" + "CPU times: user 301 ms, sys: 293 ms, total: 594 ms\n", + "Wall time: 6.19 s\n" ] } ], "source": [ "%%time\n", "from folktexts.querying import query_model_batch\n", - "\n", - "probs_row_prompts = query_model_batch(row_prompts, model, tokenizer, context_size=512)\n", - "probs_full_prompts = query_model_batch(full_prompts, model, tokenizer, context_size=512)" + "probs_row_prompts = query_model_batch(row_prompts, model, tokenizer, context_size=max(prompts_tok_len)+1)" ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 16, "id": "21154ee1-2417-4e86-a65a-5d7f6b8225ee", "metadata": {}, "outputs": [ @@ -414,36 +424,21 @@ "name": "stderr", "output_type": "stream", "text": [ - "DEBUG:root:prefix='' has density 0.22%\n", - "DEBUG:root:prefix=' ' has density 37.36%\n", - "INFO:root:Answers have 37.36% probability assigned.\n", - "DEBUG:root:prefix='' has density 0.02%\n", - "DEBUG:root:prefix=' ' has density 24.81%\n", - "INFO:root:Answers have 24.81% probability assigned.\n", - "DEBUG:root:prefix='' has density 0.20%\n", - "DEBUG:root:prefix=' ' has density 38.41%\n", - "INFO:root:Answers have 38.41% probability assigned.\n", - "DEBUG:root:prefix='' has density 0.02%\n", - "DEBUG:root:prefix=' ' has density 24.74%\n", - "INFO:root:Answers have 24.74% probability assigned.\n", - "DEBUG:root:prefix='' has density 0.25%\n", - "DEBUG:root:prefix=' ' has density 37.57%\n", - "INFO:root:Answers have 37.57% probability assigned.\n", - "DEBUG:root:prefix='' has density 0.01%\n", - "DEBUG:root:prefix=' ' has density 23.40%\n", - "INFO:root:Answers have 23.40% probability assigned.\n", - "DEBUG:root:prefix='' has density 0.28%\n", - "DEBUG:root:prefix=' ' has density 37.50%\n", - "INFO:root:Answers have 37.50% probability assigned.\n", - "DEBUG:root:prefix='' has density 0.02%\n", - "DEBUG:root:prefix=' ' has density 27.13%\n", - "INFO:root:Answers have 27.13% probability assigned.\n", - "DEBUG:root:prefix='' has density 0.24%\n", - "DEBUG:root:prefix=' ' has density 37.91%\n", - "INFO:root:Answers have 37.91% probability assigned.\n", - "DEBUG:root:prefix='' has density 0.02%\n", - "DEBUG:root:prefix=' ' has density 24.33%\n", - "INFO:root:Answers have 24.33% probability assigned.\n" + "DEBUG:root:prefix='' has density 0.00%\n", + "DEBUG:root:prefix=' ' has density 98.88%\n", + "DEBUG:root:Answers have 98.88% probability assigned.\n", + "DEBUG:root:prefix='' has density 0.00%\n", + "DEBUG:root:prefix=' ' has density 98.68%\n", + "DEBUG:root:Answers have 98.68% probability assigned.\n", + "DEBUG:root:prefix='' has density 0.00%\n", + "DEBUG:root:prefix=' ' has density 99.15%\n", + "DEBUG:root:Answers have 99.15% probability assigned.\n", + "DEBUG:root:prefix='' has density 0.00%\n", + "DEBUG:root:prefix=' ' has density 99.07%\n", + "DEBUG:root:Answers have 99.07% probability assigned.\n", + "DEBUG:root:prefix='' has density 0.00%\n", + "DEBUG:root:prefix=' ' has density 99.07%\n", + "DEBUG:root:Answers have 99.07% probability assigned.\n" ] }, { @@ -451,52 +446,32 @@ "output_type": "stream", "text": [ "0 :: label=1\n", - "\t row-prompts: 0.4906617242998033\n", - "\t row-prompts: {Choice(text='Below $50,000', value=0, numeric_value=None): 0.5093382757001966, Choice(text='Above $50,000', value=1, numeric_value=None): 0.4906617242998033}\n", - "\n", + "\t row-prompts: 0.5150617283950617\n", + "\t row-prompts: {Choice(text='Below $50,000', value=0, numeric_value=None): 0.4849382716049383, Choice(text='Above $50,000', value=1, numeric_value=None): 0.5150617283950617}\n", "\n", - "\t full-prompts: 0.6571721875298309\n", - "\t full-prompts: {Choice(text='Below $50,000', value=0, numeric_value=None): 0.3428278124701692, Choice(text='Above $50,000', value=1, numeric_value=None): 0.6571721875298309}\n", "\n", "\n", - "\n", - "1 :: label=1\n", - "\t row-prompts: 0.5038704098908807\n", - "\t row-prompts: {Choice(text='Below $50,000', value=0, numeric_value=None): 0.49612959010911933, Choice(text='Above $50,000', value=1, numeric_value=None): 0.5038704098908807}\n", - "\n", - "\n", - "\t full-prompts: 0.6618388125884492\n", - "\t full-prompts: {Choice(text='Below $50,000', value=0, numeric_value=None): 0.3381611874115507, Choice(text='Above $50,000', value=1, numeric_value=None): 0.6618388125884492}\n", + "1 :: label=0\n", + "\t row-prompts: 0.48936170212765956\n", + "\t row-prompts: {Choice(text='Below $50,000', value=0, numeric_value=None): 0.5106382978723404, Choice(text='Above $50,000', value=1, numeric_value=None): 0.48936170212765956}\n", "\n", "\n", "\n", "2 :: label=1\n", - "\t row-prompts: 0.5084399511793466\n", - "\t row-prompts: {Choice(text='Below $50,000', value=0, numeric_value=None): 0.4915600488206534, Choice(text='Above $50,000', value=1, numeric_value=None): 0.5084399511793466}\n", - "\n", - "\n", - "\t full-prompts: 0.6549214492099985\n", - "\t full-prompts: {Choice(text='Below $50,000', value=0, numeric_value=None): 0.34507855079000144, Choice(text='Above $50,000', value=1, numeric_value=None): 0.6549214492099985}\n", + "\t row-prompts: 0.5057867520315193\n", + "\t row-prompts: {Choice(text='Below $50,000', value=0, numeric_value=None): 0.49421324796848065, Choice(text='Above $50,000', value=1, numeric_value=None): 0.5057867520315193}\n", "\n", "\n", "\n", "3 :: label=0\n", - "\t row-prompts: 0.4919242494270382\n", - "\t row-prompts: {Choice(text='Below $50,000', value=0, numeric_value=None): 0.5080757505729617, Choice(text='Above $50,000', value=1, numeric_value=None): 0.4919242494270382}\n", - "\n", - "\n", - "\t full-prompts: 0.6421925599447871\n", - "\t full-prompts: {Choice(text='Below $50,000', value=0, numeric_value=None): 0.3578074400552129, Choice(text='Above $50,000', value=1, numeric_value=None): 0.6421925599447871}\n", + "\t row-prompts: 0.5367175948743224\n", + "\t row-prompts: {Choice(text='Below $50,000', value=0, numeric_value=None): 0.4632824051256777, Choice(text='Above $50,000', value=1, numeric_value=None): 0.5367175948743224}\n", "\n", "\n", "\n", "4 :: label=0\n", - "\t row-prompts: 0.49219074929361795\n", - "\t row-prompts: {Choice(text='Below $50,000', value=0, numeric_value=None): 0.507809250706382, Choice(text='Above $50,000', value=1, numeric_value=None): 0.49219074929361795}\n", - "\n", - "\n", - "\t full-prompts: 0.6558999500328428\n", - "\t full-prompts: {Choice(text='Below $50,000', value=0, numeric_value=None): 0.34410004996715715, Choice(text='Above $50,000', value=1, numeric_value=None): 0.6558999500328428}\n", + "\t row-prompts: 0.531296205027107\n", + "\t row-prompts: {Choice(text='Below $50,000', value=0, numeric_value=None): 0.46870379497289305, Choice(text='Above $50,000', value=1, numeric_value=None): 0.531296205027107}\n", "\n", "\n", "\n" @@ -510,23 +485,16 @@ " # Answers using simple row template\n", " row_answers = get_answer_to_question(acs_income_data.question, probs_row_prompts[i], tokenizer)\n", " row_risk_estimate = get_risk_estimate_from_answers(row_answers)\n", - "\n", - " # Answers using full chat template\n", - " chat_answers = get_answer_to_question(acs_income_data.question, probs_full_prompts[i], tokenizer)\n", - " chat_risk_estimate = get_risk_estimate_from_answers(chat_answers)\n", " \n", " print(f\"{i} :: label={y_train.iloc[i]}\")\n", - " print(f\"\\t row-prompts: {row_risk_estimate}\")\n", - " print(f\"\\t row-prompts: {row_answers}\")\n", - " print(\"\\n\")\n", - " print(f\"\\t full-prompts: {chat_risk_estimate}\")\n", - " print(f\"\\t full-prompts: {chat_answers}\")\n", - " print(\"\\n\\n\")\n" + " print(f\"\\t risk-score: {row_risk_estimate}\")\n", + " print(f\"\\t all-answers: {row_answers}\")\n", + " print(\"\\n\\n\")" ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 17, "id": "7547c162-1206-47e7-b1c7-2cd49669892c", "metadata": {}, "outputs": [ @@ -540,14 +508,14 @@ { "data": { "text/plain": [ - "[['', ' C', '\\n', ' B', ' A'],\n", - " [' Below', ' C', '\\n', ' A', ' B'],\n", - " ['', ' C', '\\n', ' A', ' B'],\n", - " [' Below', ' C', '\\n', ' B', ' A'],\n", - " ['', ' C', '\\n', ' B', ' A']]" + "[[' None', ' D', ' C', ' A', ' B'],\n", + " [' None', ' D', ' C', ' B', ' A'],\n", + " [' None', ' D', ' C', ' A', ' B'],\n", + " [' None', ' D', ' C', ' A', ' B'],\n", + " [' None', ' D', ' C', ' A', ' B']]" ] }, - "execution_count": 16, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -557,91 +525,6 @@ "max_n_tokens(probs_row_prompts, tokenizer, n=5)" ] }, - { - "cell_type": "code", - "execution_count": 17, - "id": "0801036d-26d5-4a84-bb70-6fa9b55f5ed3", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Highest likelihood tokens for CHAT prompts\n" - ] - }, - { - "data": { - "text/plain": [ - "[['...', ' A', ' <', ':', ' B'],\n", - " ['...', ' A', ' <', ':', ' B'],\n", - " ['...', ' A', ' <', ' B', ':'],\n", - " ['...', ' <', ' A', ':', ' B'],\n", - " ['...', ' A', ' <', ' B', ':']]" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "print(\"Highest likelihood tokens for CHAT prompts\")\n", - "max_n_tokens(probs_full_prompts, tokenizer, n=5)" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "id": "30a6ecfb-fb6c-4d69-85e7-6e134ba0954b", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "<|im_start|>user\n", - "You are a helpful assistant. You answer multiple-choice questions based on the information provided. Your answer should start with a single letter representing the choice you think is correct. The data provided is enough to reach an approximate answer. Please answer with your best estimate.\n", - "\n", - "The following data corresponds to a survey respondent. Please answer the question based on the information provided. The data provided is enough to reach an approximate answer.\n", - "\n", - "Information:\n", - "- The age is 54 years old.\n", - "- The current employment status is working for a for-profit private company or organization.\n", - "- The highest grade completed is Bachelor's degree.\n", - "- The marital status is divorced.\n", - "- The occupation is software developers.\n", - "- The place of birth is Georgia/GA.\n", - "- The relationship to the reference person in the household is the 'reference person' itself.\n", - "- The usual number of hours worked per week is 40 hours.\n", - "- The sex is Male.\n", - "- The race is White.\n", - "\n", - "Question: What is this person's estimated yearly income?\n", - "A. Below $50,000.\n", - "B. Above $50,000.\n", - "Answer:<|im_end|>\n", - "<|im_start|>assistant\n", - "If had to select one of the options, my answer would be B. Above $50,000.\n", - "<|im_end|>\n", - "CPU times: user 1.45 s, sys: 168 ms, total: 1.62 s\n", - "Wall time: 2.06 s\n" - ] - } - ], - "source": [ - "%%time\n", - "import torch\n", - "# tok_ids = tokenizer.encode(row_prompts[0])\n", - "tok_ids = tokenizer.encode(full_prompts[0])\n", - "out_ids = model.generate(\n", - " torch.tensor(tok_ids).reshape(1,-1).to(\"mps\"),\n", - " pad_token_id=tokenizer.pad_token_id,\n", - " max_new_tokens=100,\n", - ")\n", - "print(tokenizer.decode(out_ids[0]))" - ] - }, { "cell_type": "markdown", "id": "b83085bc-9df7-43b0-9282-cfd4c83713b7", @@ -659,12 +542,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7a590a4300a049b1b88f376817d8141c", + "model_id": "afc69dea3bbb47da922e41d314130cb6", "version_major": 2, "version_minor": 0 }, "text/plain": [ - " 0%| | 0/188 [00:00" + "" ] }, "execution_count": 22, @@ -5751,7 +5642,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcAAAAGyCAYAAABzzxS5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABzrklEQVR4nO3dd1hT59sH8G8YCUOmiIAiw1kcOChWakuxKNY96h5o1VbFSR24wG1bW+ustG5bLWp/Vq0DB4oVtbWoWBXFKkiiAoooyJBA8rx/8OZIIGACCUnI/bmuXJc5OUnuHCFfznOewWOMMRBCCCEGxkjbBRBCCCHaQAFICCHEIFEAEkIIMUgUgIQQQgwSBSAhhBCDRAFICCHEIFEAEkIIMUgUgIQQQgwSBSAhhBCDZKLtAmqaVCrFkydPYGVlBR6Pp+1yCCGEqIgxhlevXsHFxQVGRtU4j2NadP78edarVy/m7OzMALDff//9rc85d+4ca9euHePz+axx48Zsx44dKr2nSCRiAOhGN7rRjW56fhOJRFULn/+n1TPAvLw8eHt747PPPsOAAQPeun9KSgp69uyJiRMnYs+ePYiJicH48ePh7OyMoKAgpd7TysoKACASiWBtbV2t+gkhhNS8nJwcuLq6ct/nVcVjTDcmw+bxePj999/Rr1+/CveZO3cujh07hlu3bnHbhg4dipcvXyI6Olqp98nJyYGNjQ2ys7MpAAkhpAYwxlBQJKn265ibGoPH46nte1yvrgFevnwZgYGBctuCgoIwY8aMCp9TWFiIwsJC7n5OTo6myiOEEIOiTLAxBgyKvIzEtKp99xbnPEPmse9R95Np+G99MCz46ostvQrA9PR01K9fX25b/fr1kZOTg4KCApibm5d7zqpVq7BkyZKaKpEQQvReTQSbMopzniHj13kofpmO5yfWAwhW6+vrVQBWxbx58xAaGsrdl7UdE0IIKU8qZei1IU7tweblbI0DEztB2c73j0QidO8aiOKX6fDw8ET06UMwNzVWa016FYBOTk7IyMiQ25aRkQFra2uFZ38AIBAIIBAIaqI8QgjRO6XP9hgDem2IQ0pmntLPVzbYZNfvlHXl8kWkpCTD09MTsbGxGjlx0asA7NSpE44fPy637fTp0+jUqZOWKiKEEP0jC73KmjE9HCxxdGpntQebskaOHAkA8Pf311irnVYDMDc3F/fv3+fup6SkICEhAfb29mjUqBHmzZuHx48fY/fu3QCAiRMnYuPGjZgzZw4+++wznD17Fvv378exY8e09REIIUSvKNPE6eVsjaNTO8PIqGYnCxGJRDA3N4eDgwOANyGoKVoNwPj4eAQEBHD3ZdfqgoODsXPnTqSlpUEoFHKPe3h44NixY5g5cybWrVuHhg0bYuvWrUqPASSEEEMmlTJ8vOZ8uSbOss2Ymjqrq4xIJMJHH30ES0tLnD17lgtBTdKZcYA1hcYBEkIMDWMM+WKJ3PW90k2c2gi80mThl5ys3DU/gxwHSAghRHmy4Ct7nc/DwRIxof413sSpiKrhp04UgIQQUgtVdK1PW9f3FNFm+AEUgIQQUqsoau4E3lzns+Brt7lTRtvhB1AAEkJIrVBZc+fRqZ11JvhkioqKUFRUpLXwAygACSFEr1UUfIBuNXeWJQs+U1NTrc3ORQFICCF6ouwcnRUNZNe15k4ZoVCIxMREdO/eHUBJCGoTBSAhhOgBZQew62LwASXhFxAQAJFIhCNHjnAhqE0UgIQQosMq6tRSmi4HH/Am/GQdXlq2bKntkgBQABJCiE56W6eW0jmn7YHslSkbftrq8KIIBSAhhOgYxhg+jbyMq6kv5LbrcqcWRXQ5/AAKQEII0TkFRRK58NP1Jk5Fnj59qtPhB1AAEkJIjXvbiuv54jePxS8MRF1Lvt4En4yDgwP8/f0BQCfDD6AAJISQGlVR82ZF9OmsrzQjIyNs3boVmZmZcHR01HY5ChlpuwBCCDEk+WKJ0uHn42YHc1NjDVekPiKRCLNnz0ZxcTGAkhDU1fAD6AyQEEI0qnRzJ2NArw1x3GPxCwNhwa844HS5d2dZpef2BIDVq1druaK3owAkhBANqGyKMqCkY4s+XttTpOzE1tOmTdN2SUqhACSEkGpSdooyGdlwhtoYfrra4UURCkBCCFGBqmEHvBnGIMs7fWrarIw+hx9AAUgIIUpTtQenPo7fU5ZEIsEnn3yit+EHUAASQshbyc76KuvBWfYsD6g9Z3qKGBsbY82aNQgNDcWJEyf0LvwACkBCCCmnbM9NRU2cZXtw1uawK40xxn3Obt264caNGzA21p+hGqVRABJCyP97W89NGR83u1rTg1MVIpEII0aMwNatW9GsWTMA0NvwAygACSEGSNFUZMr03JQ1cRrK2V5ppTu8jB8/HufPn9f7Y0ABSAgxGMqe4QG1t+dmVZTt7blnz55acSwoAAkhtV5Vgq829tysCn0f6lAZCkBCSK2i7Dg9Rb02AcM+0yurNocfQAFICKlFlBmnR2d4yvvyyy9rbfgBFICEkFpEmXF6FHzK+/HHHwEA3333Xa0LP4ACkBBSS0ilrNKVFqhpUzl5eXmwtLQEANjZ2WH//v1arkhzaD1AQojeKenUUszd8gqL8fGa80jJzAPwZqUFC74Jd6PwezuhUIg2bdpg3bp12i6lRvAYY0zbRdSknJwc2NjYIDs7G9bW1touhxCiItmZXkW9OT0cLBET6g8jIwo8VQiFQgQEBCA5ORmNGzfGjRs3uDNBXaOu73FqAiWE6DxZz07ZgrKyM72yZMsMUfippnT4eXp64ty5czobfupEAUgI0WkVnfF5OFj+/5p6b7bRdT7VlQ2/2tjbsyIUgIQQncWY4vCjMz31MOTwAygACSE6ijGG53liLvxKn/HRmZ56HD161GDDD6AAJIToIEUD2o9O7QxLAX1lqdPkyZMBAL179za48AMoAAkhOqigSH5Au4+bndyYPlJ1jx49go2NDaysrAC8CUFDRAFICNE5pQdnxS8MNMi19zRBds3PyckJ0dHRXAgaKgpAQohOKTujC01dph6lO7wAQHZ2NgWgtgsghBDgzZJFpcf5eTlbw9yUmj6rS1Fvz4YNG2q7LK2jACSEaFVFa/W96fVJZ3/VYehDHSpDAUgI0YrKFqmlcX7qQeFXOQpAQkiNq2h2F1qySL1ycnKQk5ND4VcBCkBCSI2SSpncyg0ABZ+mtGrVCufOnYONjQ2FnwIUgISQGlM2/GTX+Sj41EckEiE1NRWdO3cGUBKCRDFaD5AQUiMUhV9MqD8sBbRWn7qIRCJ89NFHCAoKQlxc3NufYOAoAAkhGldR+FEnF/WRhV9ycjKcnJzg5uam7ZJ0HjWBEkI0RtHYPgo/9SsdftThRXkUgIQQjVA0oTWFn/pR+FUdNYESQtROtpRR6fDzcram8FOz9PR0Cr9qoDNAQojaVDS4nSa01gx7e3t4e3sDAIVfFVAAEkKqhTGGgiIJGIPCWV183Owo/DSEz+cjKioKWVlZcHJy0nY5eqdKASgUCpGamor8/HzUq1cPLVu2hEAgUHdthBAdV9GMLgANbtcUkUiEHTt2YNGiReDxeODz+RR+VaR0AD58+BCbN29GVFQUHj16BFZqwS4+n48PPvgAn3/+OQYOHAgjI7q0SEhtxxhNZ1bTSnd4AYDw8HAtV6TflEqqadOmwdvbGykpKVi+fDkSExORnZ0NsViM9PR0HD9+HJ07d0Z4eDjatGmDf/75R9N1E0K0oOQaXzHyxcV4nifmws/DwRK3lwQhcWkQjk3rTIPbNaBsb8+xY8dquyS9p9QZoKWlJZKTk1G3bt1yjzk6OqJLly7o0qULIiIiEB0dDZFIhHfffVftxRJCtKOylRsA4OjUktAjmkFDHTRDqZ/YVatWKf2C3bt3r3IxhBDdU9l1PqCkk4sFnxat1RQKP82hP9kIIRWqbOUGWQunuSld69MUsViMwMBACj8NUVtvlTt37sDT01NdL0cI0RLZdb68wuJy83feXvLmGp8Fv+RG4ac5fD4fy5YtQ7NmzSj8NEBtZ4BisRipqanqejlCiBZU1NxJU5hpz+DBg9GvXz/w+Xxtl1LrKB2AoaGhlT7+7NmzahdDCNEeRc2dQEmT59GpnSn8aohQKMSECROwdetW7oyPwk8zlA7AdevWoW3btrC2tlb4eG5ubpUK2LRpE1avXo309HR4e3tjw4YN8PX1rXD/tWvXYvPmzRAKhXBwcMCnn36KVatWwczMrErvTwh5M6av7EK1PB5d46tJQqEQAQEBSE5Oxvjx43Hy5Eltl1SrKR2ATZo0wcyZMzFy5EiFjyckJKBDhw4qvfm+ffsQGhqKyMhIdOzYEWvXrkVQUBCSkpLg6OhYbv+9e/ciLCwM27dvh5+fH+7du4cxY8aAx+NhzZo1Kr03IaSEbOLq0mP6qLmz5pUOP09PT2zdulXbJdV6SneC8fHxwdWrVyt8nMfjyc0Oo4w1a9ZgwoQJGDt2LLy8vBAZGQkLCwts375d4f6XLl3C+++/j+HDh8Pd3R3dunXDsGHDcOXKFZXelxBDV7qjS8/1cfBZfoZ7jJo7a17Z8KMOLzVD6TPA7777DoWFhRU+7u3tDalUqvQbi8ViXL16FfPmzeO2GRkZITAwEJcvX1b4HD8/P/zyyy+4cuUKfH19kZycjOPHj2PUqFEVvk9hYaFc3Tk5iscyEWIoFK3TJ0Nj+moehZ/2KB2A6p5sNTMzExKJBPXr15fbXr9+fdy9e1fhc4YPH47MzEx07twZjDEUFxdj4sSJmD9/foXvs2rVKixZskSttROirxSt0wfQ/J3aNGnSJAo/LdGrWatjY2OxcuVK/PDDD7h27RoOHjyIY8eOYdmyZRU+Z968ecjOzuZuIpGoBismRHfIzvxKN3fGLwyk+Tu1bOvWrejZsyeFnxZobSYYBwcHGBsbIyMjQ257RkZGhWebixYtwqhRozB+/HgAQOvWrZGXl4fPP/8cCxYsULgKhUAgoKWaCAFQUCSRO/Ojdfq0p7CwkPtecnZ2xtGjR7VckWHS2hkgn89Hhw4dEBMTw22TSqWIiYlBp06dFD4nPz+/XMgZG5dcr1C1Aw4hhkQ2mbVM/MLA/5/OjMKvpolEIrRu3Rq7d+/WdikGT6tzgYaGhiI4OBg+Pj7w9fXF2rVrkZeXxy3zMXr0aDRo0ICbjLt3795Ys2YN2rVrh44dO+L+/ftYtGgRevfuzQUhIUSeok4vdK1PO0pPbL18+XIMGTKEWqi0SKsBOGTIEDx79gzh4eFIT09H27ZtER0dzXWMEQqFcmd8CxcuBI/Hw8KFC/H48WPUq1cPvXv3xooVK7T1EQjRWYwxFBRJkC8u3/Rpbkp/MNa0sqs6xMTEUPhpGY9Voe3wzz//hIWFBXx8fLht8fHxyM/Px4cffqjWAtUtJycHNjY2yM7OrnBWG0L0XUVzesYvDKTrflpASxqpl7q+x6t0BvjRRx+hRYsWSExM5LaNGjUK9+7dg0QiqeSZhBBNkZ3xMQa5ac1kqNOLdlD46a4qBWBKSgpMTU3ltsXExKCoqEgtRRFC3k4WeCX/hsLV2mlOT+3bs2cPhZ+OqlIAurm5ldvm4uJS7WIIIcqpbDYXGVrFQTfMnTsXADBixAgKPx1DK8ITomcqms0FkF+tnc74tOfJkyewt7eHmZkZeDwewsLCtF0SUUCpALSzs1P6FykrK6taBRFCKqaoc0v8wkBu/k4KPe2TXfNr3rw5Dh48SEu16TClAnDt2rUaLoMQ8jayNftKhx91bNEtpTu8ACUnBHR5SHcpFYDBwcGaroMQ8hb5Yoncmn1Hp3amAe06RFFvTwo/3ValqdAePHiAhQsXYtiwYXj69CkA4MSJE7h9+7ZaiyOElJz55RUWo9eGOG7b0ak0ebUuoaEO+knlADx//jxat26Nv//+GwcPHkRubi4A4MaNG4iIiFB7gYQYMqmUoef6OLSMOMmN6/NytqY1+3QIhZ/+UjkAw8LCsHz5cpw+fRp8Pp/b3qVLF/z1119qLY4QQ6bomp9saAOd+emOtLQ0PHv2jMJPD6k8DOLmzZvYu3dvue2Ojo7IzMxUS1GEELrmpy98fX1x5swZODs7U/jpGZXPAG1tbZGWllZu+/Xr19GgQQO1FEWIoWOMYVDkZe4+XfPTLSKRCAkJCdx9X19fCj89pHIADh06FHPnzkV6ejp4PB6kUikuXryIWbNmYfTo0ZqokRCDUbJuXzGe54m5sz+65qdbZNf8unTpIheCRP+o3AS6cuVKhISEwNXVFRKJBF5eXpBIJBg+fDgWLlyoiRoJMQgVreBAC9fqjrIdXurWravtkkg1VGk5JKBkrb5bt24hNzcX7dq1Q9OmTdVdm0bQckhEFzFW0tuzbPj5uNlRAOoI6u2pO7S6HBIANGrUiPvPp19OQqqnoKh8hxeaz1N3UPjVTlUaCL9t2za0atUKZmZmMDMzQ6tWrbB161Z110aIQSi57vdmHU1ZhxcLPnV60QWPHz+m8KulVD4DDA8Px5o1azB16lR06tQJAHD58mXMnDkTQqEQS5cuVXuRhNQ2pRevLbuOH2WebrGzs+OWgKPwq11UvgZYr149rF+/HsOGDZPb/uuvv2Lq1Kk6PxaQrgESbatsLT+65qeb8vPz8eLFCxrqpSO0dg2wqKgIPj4+5bZ36NABxcXFVS6EEENQ0Vp+snX8aKC7bhAKhTh48CCmT58OHo8HCwsLWFhYaLssomYqB+CoUaOwefNmrFmzRm77Tz/9hBEjRqitMEJqm8rW8qPOLrpDKBQiICCAW9JoxowZ2i2IaIxSARgaGsr9m8fjYevWrTh16hTee+89AMDff/8NoVBIA+EJqQCt5acfSoefp6cnBg4cqO2SiAYpFYDXr1+Xu9+hQwcAJcsiAYCDgwMcHBxoOSRCKqBomAM1d+qWsuFHHV5qP6UC8Ny5c5qug5BaR9bTE4DCYQ5Ed1D4GSb6LSREjSob3iBDJ326paCgAF26dKHwM0BVCsD4+Hjs378fQqEQYrFY7rGDBw+qpTBC9E1lwxtkfNzsYG5KE1vrEnNzc8yePRvffvstzp49S+FnQFQOwKioKIwePRpBQUE4deoUunXrhnv37iEjIwP9+/fXRI2E6IWCIkmFwxtkZ33U21M3ffHFFxg9ejTMzc21XQqpQSpPhbZy5Up8//33+OOPP8Dn87Fu3TrcvXsXgwcPRqNGjTRRIyF6J35hIBKXBuHYtDfTmtHUZrpDJBKhf//+chN3UPgZHpUD8MGDB+jZsycAgM/nIy8vDzweDzNnzsRPP/2k9gIJ0UcWfGMKPB0lm9j60KFDmDBhgrbLIVqkcgDa2dnh1atXAIAGDRrg1q1bAICXL18iPz9fvdURogdki9iW7ulJdFPZVR3Wr1+v7ZKIFql8DfDDDz/E6dOn0bp1awwaNAjTp0/H2bNncfr0aXz88ceaqJEQnVXRIrZE99CSRqQslQNw48aNeP36NQBgwYIFMDU1xaVLlzBw4EBaEZ4YFEWzuwDU01MXUfgRRVQOQHt7e+7fRkZGCAsLU2tBhOgD2aTWtIitfggODqbwI+UoFYA5Oco379ASQ6S2U9TsSbO76LatW7di/Pjx2LVrF4Uf4Sj1G2tra/vWv2gZY+DxeJBIqCMAqb0qmtTagk9NnrqmuLgYJiYlX3Genp44e/aslisiuobmAiVEBTSptX4QiUTo1q0bvv76a/Tp00fb5RAdpVQA+vv7a7oOQnRO6cmsZWhSa91XusPL3Llz0aNHD+5MkJDS6KeCEAWUmdeTTvp0T9nenqdOnaLwIxVSeSA8IYZA0byepdFQB91DQx2IquhPI0IUYOzNv+MXBpbr5EJDHXQLhR+pCgpAQsqQDXOQkc3rSXRXZGQkhR9RWZV+q4uLixEbG4sHDx5g+PDhsLKywpMnT2BtbY06deqou0ZCaoxsmENKZh6AkuWMqKlT9y1btgwAMHHiRAo/ojSVAzA1NRXdu3eHUChEYWEhunbtCisrK3z99dcoLCxEZGSkJuokpEYoGuZATZ26KSMjA3Xr1oWJiQmMjIywYsUKbZdE9IzKnWCmT58OHx8fvHjxQm79rP79+yMmJkatxRGiTUendoaREYWfLhKJRPDz88Po0aNRXFys7XKInlL5DPDChQu4dOkS+Hy+3HZ3d3c8fvxYbYURUtNKljV6M86PTvx0U+kOLwDw/Plz1K9fX8tVEX2kcgBKpVKF0509evQIVlZWaimKkJpGyxrpB0W9PSn8SFWp3ATarVs3rF27lrvP4/GQm5uLiIgI9OjRQ521EVIjpFKGj9ecLze/J3V+0S001IGoG4+x0iOe3u7Ro0cICgoCYwz//fcffHx88N9//8HBwQF//vknHB0dNVWrWuTk5MDGxgbZ2dm0coUBk01zxhjken3S/J66icKPlKau73GVm0AbNmyIGzduICoqCv/++y9yc3Mxbtw4jBgxQq5TDCG6SHadb1Dk5XLNnR4OlogJ9aeOLzrov//+w+PHjyn8iFqpfAb4+vVrmJmZaaoejaMzQMNV2fyeXs7W1OtTx509exZNmzal8CPaOwN0dHRE//79MXLkSHz88ccwMqLpRIl+yBfLz+/p5WyNAxM70SruOkooFOL169do1qwZAKBLly5arojUNiqn165du5Cfn4++ffuiQYMGmDFjBuLj4zVRGyFqU3Z6s/iFgTg2rWQ5Iwu+CYWfjhEKhQgICMBHH32Ee/fuabscUkupHID9+/fHgQMHkJGRgZUrVyIxMRHvvfcemjVrhqVLl2qiRkKqRdH0ZnUt+RR6OkoWfsnJyTA3N6e+BURjVL4GqEhiYiJGjBiBf//9V+EYQV1C1wANT764GF7hJwFQRxddVzr8qMMLqYi6vserfAHv9evX2L9/P/r164f27dsjKysLs2fPrnIhhGhK6T/xqKOL7qLwIzVN5U4wJ0+exN69e3Ho0CGYmJjg008/xalTp/Dhhx9qoj5Cqkw25KH0tT9q9dRNjx49ovAjNU7lAOzfvz969eqF3bt3o0ePHjA1NdVEXYRUi6KpzWhpI91laWkJe3t7AKDwIzVG5QDMyMigOT+JTpNNbSbr9AK8GedHHV90k52dHU6dOoW8vDw0bNhQ2+UQA6FUAObk5HAXGhljyMmpeMJg6lhCtKlsj0+a2kx3iUQinD59Gp999hmAkhC0s7PTclXEkCgVgHZ2dkhLS4OjoyNsbW0VfpEwxsDj8XS+Fyip3couaEs9PnVT2SWNZCFISE1SKgDPnj3Ltc+fO3dOowURUh3U41P3lZ3YumvXrtouiRgopQLQ39+f+7eHhwdcXV3LnQUyxiASidRbHSEqYIxhUORl7j61eOoeWtWB6BKVxwF6eHjg2bNn5bZnZWXBw8ND5QI2bdoEd3d3mJmZoWPHjrhy5Uql+798+RIhISFwdnaGQCBAs2bNcPz4cZXfl9Q+pZs/qcen7qHwI7pG5V6gsmt9ZeXm5qq8SsS+ffsQGhqKyMhIdOzYEWvXrkVQUBCSkpIUrisoFovRtWtXODo64rfffkODBg2QmpoKW1tbVT8GqYVKN3+WTHJNp4C64tWrVxR+ROcoHYChoaEASlaAX7RoESwsLLjHJBIJ/v77b7Rt21alN1+zZg0mTJiAsWPHAgAiIyNx7NgxbN++HWFhYeX23759O7KysnDp0iVu/KG7u7tK70lqJ2r+1G1WVlYYN24ctm3bRuFHdIbSAXj9+nUAJV80N2/eBJ/P5x7j8/nw9vbGrFmzlH5jsViMq1evYt68edw2IyMjBAYG4vLlywqfc+TIEXTq1AkhISE4fPgw6tWrh+HDh2Pu3LkwNlbc3FVYWIjCwkLufmVDOIj+ouZP3Td//nxMnTqVxhETnaF0AMp6f44dOxbr1q2r9ni/zMxMSCQS1K9fX257/fr1cffuXYXPSU5OxtmzZzFixAgcP34c9+/fx+TJk1FUVISIiAiFz1m1ahWWLFlSrVqJfqHmT90gEokwb948bN68mQs9Cj+iS1S+Brhjxw5N1KEUqVQKR0dH/PTTTzA2NkaHDh3w+PFjrF69usIAnDdvHtd8C5ScAVLzS+1G2ad9Zcf5/fLLL1quiJDylArAAQMGYOfOnbC2tsaAAQMq3ffgwYNKvbGDgwOMjY2RkZEhtz0jIwNOTk4Kn+Ps7AxTU1O55s533nkH6enpEIvFcs2yMgKBAAKBQKmaCCHVV7a356pVq7RdEiEKKTUMwsbGhmtSsrGxqfSmLD6fjw4dOiAmJobbJpVKERMTg06dOil8zvvvv4/79+9DKpVy2+7duwdnZ2eF4UcMR/VXtSTqQEMdiF5hWhQVFcUEAgHbuXMnS0xMZJ9//jmztbVl6enpjDHGRo0axcLCwrj9hUIhs7KyYlOmTGFJSUns6NGjzNHRkS1fvlzp98zOzmYAWHZ2tto/D6l5UqmU5b4uYh+tPsfc5h5lbnOPsrzCIm2XZZCEQiHz9PRkAJinpycTCoXaLonUUur6Hlf5GmBBQQEYY9wwiNTUVPz+++/w8vJCt27dVHqtIUOG4NmzZwgPD0d6ejratm2L6OhormOMUCiEkdGbk1RXV1ecPHkSM2fORJs2bdCgQQNMnz4dc+fOVfVjkFqAljzSHYwxDB48mM78iF7hMaZa41G3bt0wYMAATJw4ES9fvkTz5s3B5/ORmZmJNWvWYNKkSZqqVS1ycnJgY2OD7OxsWrlCT7FSC90qWvKI5v/Ujlu3bmHChAnYv38/hR/RKHV9j6s8Fdq1a9fwwQcfAAB+++03ODk5ITU1Fbt378b69eurXAghymCM4dPIy2gZcVJuyaPbS4JwbBqFX00rfT2+VatWuHTpEoUf0RsqB2B+fj43lufUqVMYMGAAjIyM8N577yE1NVXtBRIiwxjD8zwxrqa+4LZ5OVsjJtQflgITGvtXw0QiEdq1a4fz589z2+j/gOgTla8BNmnSBIcOHUL//v2563EA8PTpU2pSJGrFGENBkeT//w0Mirwsd70vfmEg6lry6UtXC0r39pw2bRquX78ud72eEH2gcgCGh4dj+PDhmDlzJrp06cINWTh16hTatWun9gKJYVLUwaU0Hzc7Cj8tKTvU4ejRoxR+RC+p3AkGANLT05GWlgZvb2/uB//KlSuwtrZGixYt1F6kOlEnGN3HGEPP9YrDz8vZGgcmdoIF35jCTwtonB/RBer6Hlf5DBAAnJyc4OTkhEePHgEAGjZsCF9f3yoXQUhp+eI3E1t7OFji6NTO3PRm5qYUfNpC4UdqG5XbLaRSKZYuXQobGxu4ubnBzc0Ntra2WLZsmVyPMEKqgpVZ1ujo1M6wFJjAgl9yo/DTntWrV1P4kVpF5TPABQsWYNu2bfjqq6/w/vvvAwDi4uKwePFivH79GitWrFB7kaT2k3V4KX325+VsDQs+DWrXFd9++y0AYPbs2RR+pFZQ+Rqgi4sLIiMj0adPH7nthw8fxuTJk/H48WO1FqhudA1Q98jG9pUe3gAAt5cEwVJQpVZ6oiaZmZmoW7cunXkTnaK1gfBZWVkKO7q0aNECWVlZVS6EGK58saRc+Pm42dHZn5YJhUJ07NgRISEhqEJfOUJ0nsp/Xnt7e2Pjxo3lZn3ZuHEjvL291VYYMQxlr/nFLwyEBd+YOrtomVAoREBAAJKTk3Hy5Ek8f/4cDg4O2i6LELVSOQC/+eYb9OzZE2fOnOHGAF6+fBkikQjHjx9Xe4Gkdisokr/mR2P7tK90+Mk6vFD4kdpI5SZQf39/3Lt3DwMGDMDLly/x8uVLDBgwAElJSdwcoYRUxYGJnSj8tExR+FGHF1JbqXQG+PDhQ5w+fRpisRhDhw5Fq1atNFUXMRClLy1R9mkXhR8xNEoH4Llz59CrVy8UFBSUPNHEBNu3b8fIkSM1Vhyp3cpe/yPalZCQgNTUVAo/YjCUbgJdtGgRunbtisePH+P58+eYMGEC5syZo8naSC1X9vofLWSrXX369MHBgwcp/IjBUHocoK2tLS5dugQvLy8AJcsiWVtbIyMjA3Xr1tVokepE4wB1R764GF7hJwHQmD9tEYlEAECBR/RKjY8DzMnJkesJZmFhAXNzc2RnZ1f5zQmRoet/NU82t+dHH33EBSEhhkSlP7lPnjwJGxsb7r5UKkVMTAxu3brFbSs7QwwhFaGx1dpTdmJrQgyRSgEYHBxcbtsXX3zB/ZvH40EikVS/KlLrydb7IzWPVnUgpITSAUgrPRB1YIwhXyxBrw1xSMnMA0AdYGoShR8hb1CvA1IjZME3KPKy3EK3b9b7o4uAmkbhR4g8pTrB/PXXX0q/YH5+Pm7fvl3lgkjtI1vtoWXESbnw83K2RkyoP4yMKPxqgomJCfh8PoUfIf9PqQAcNWoUgoKCcODAAeTl5SncJzExEfPnz0fjxo1x9epVtRZJ9FtBkfxqD17O1ri9JAjHpnWm8KtBzs7OOHv2LIUfIf9PqSbQxMREbN68GQsXLsTw4cPRrFkzuLi4wMzMDC9evMDdu3eRm5uL/v3749SpU2jdurWm6yZ6pHRvz/iFgTThdQ0SiUT466+/MGjQIAAlIUgIKaHygrjx8fGIi4tDamoqCgoK4ODggHbt2iEgIAD29vaaqlNtaCB8zWKMoef6OK7pM3FpECz4dOm5Jsiu+aWkpGDfvn1cCBKi79T1Pa7yN5GPjw98fHyq/IbEsOSLabozbSjb4eW9997TdkmE6ByVl0MiRFllx/rRckc1g3p7EqIcCkCiEYyxcmP9LPh09qdpFH6EKI8CkGhE6ZUeaKxfzXjx4gWFHyEqoAAkGlG6a9XRqTTcoSbY2tpiwIABFH6EKKlaAfj69Wt11UFqkbLX/ujEr2bweDx88803iI+Pp/AjRAkqB6BUKsWyZcvQoEED1KlTB8nJyQBKFszdtm2b2gsk+kXRtT/q+ak5IpEIEydO5P4Y5fF4sLOz03JVhOgHlQNw+fLl2LlzJ7755hvw+Xxue6tWrbB161a1Fkf0D137qzmyDi8//vgjZsyYoe1yCNE7Kgfg7t278dNPP2HEiBEwNn7zl723tzfu3r2r1uKIfqNrf5pTtrfnggULtF0SIXpH5QB8/PgxmjRpUm67VCpFUVGRWooi+qt05xc68dMMGupAiHqoHIBeXl64cOFCue2//fYb2rVrp5aiiP5hjCGvsJgWudUwCj9C1EflqdDCw8MRHByMx48fQyqV4uDBg0hKSsLu3btx9OhRTdRIdJxsuaOyKz5Q5xf1kkql6Nu3L4UfIWqi8hlg37598ccff+DMmTOwtLREeHg47ty5gz/++ANdu3bVRI1Exyla7og6v6ifkZERfvjhB7Rr147CjxA1UHk1CH1Hq0GoX15hMVpGnARAyx1pAmNM7nhKpVIYGdEcFsRwqet7XOXfIk9PTzx//rzc9pcvX8LT07PKhRD9VHbQuwXfmMJPjYRCIXx9fXHt2jVuG4UfIeqh8m/Sw4cPIZFIym0vLCzE48eP1VIU0Q806F2zhEIhAgICEB8fjy+++AIG1lhDiMYp3QnmyJEj3L9PnjwJGxsb7r5EIkFMTAzc3d3VWhzRbaXX+qNB7+olCz9Zh5eDBw/SsSVEzZQOwH79+gEomWopODhY7jFTU1O4u7vju+++U2txRHcxxjAo8jJ3nwa9q0/Z8KMOL4RohtIBKJVKAQAeHh74559/4ODgoLGiiO4rPeUZrfWnPhR+hNQclccBpqSkaKIOosdopXf1Wbx4MYUfITVE5QAEgLy8PJw/fx5CoRBisVjusWnTpqmlMKLbaMozzdi4cSMAYMmSJRR+hGiYygF4/fp19OjRA/n5+cjLy4O9vT0yMzNhYWEBR0dHCkADUPb6H6ke2VgmHo8HCwsLbN++XdslEWIQVB4GMXPmTPTu3RsvXryAubk5/vrrL6SmpqJDhw749ttvNVEj0SGMMTzPE8td/6OhD1UnEonQvn17hIeH0zAHQmqYygGYkJCAL7/8EkZGRjA2NkZhYSFcXV3xzTffYP78+ZqokegI2ZyfPsvPcNvo+l/VlZ7Yeu/evcjJydF2SYQYFJUD0NTUlJuJwtHREUKhEABgY2MDkUik3uqITskXy8/56eNmR70/q0jRqg6lx9YSQjRP5WuA7dq1wz///IOmTZvC398f4eHhyMzMxM8//4xWrVppokaiA8pe96M5P6uOljQiRDeofAa4cuVKODs7AwBWrFgBOzs7TJo0Cc+ePcOPP/6o9gKJbig77o/Cr2oo/AjRHSqfAfr4+HD/dnR0RHR0tFoLIrqPrvtV3fnz5yn8CNERaptW/tq1a+jVq5e6Xo7oMMq+qhs5ciR+/vlnCj9CdIBKAXjy5EnMmjUL8+fPR3JyMgDg7t276NevH959911uujRSuzDGkC8uvwIIUY5IJEJmZiZ3f+TIkRR+hOgApZtAt23bhgkTJsDe3h4vXrzA1q1bsWbNGkydOhVDhgzBrVu38M4772iyVqIFsvX+ZNf/iGpk1/wsLS1x9uxZmkOXEB2i9BngunXr8PXXXyMzMxP79+9HZmYmfvjhB9y8eRORkZEUfrWQbL2/0uHn42ZHA9+VVLrDS15eHgoKCrRdEiGkFKXPAB88eIBBgwYBAAYMGAATExOsXr0aDRs21FhxRLsUrfdHK74rh3p7EqL7lA7AgoICWFhYAChZE1AgEHDDIUjtI2v6lDk6tTMsBVWaO93gUPgRoh9U+kbbunUr6tSpAwAoLi7Gzp07y13ToMmw9Z+s6TMlMw8ArfenCgo/QvQHjyk5A6+7u/tbm754PB7XO1QVmzZtwurVq5Geng5vb29s2LABvr6+b31eVFQUhg0bhr59++LQoUNKvVdOTg5sbGy4GfhJefniYniFnwRQ0vQZE+pPq70rKSUlBR999BFMTEwo/AjREHV9jyt9Bvjw4cMqv0ll9u3bh9DQUERGRqJjx45Yu3YtgoKCkJSUBEdHx0rrmTVrFj744AON1GXISv9JdHRqZwo/FXh4eCA2NhYmJiYUfoToOLUNhK+qNWvWYMKECRg7diy8vLwQGRn51jXRJBIJRowYgSVLlsDT07MGq639yl77o/4ubycSieRmRPLw8KDwI0QPaDUAxWIxrl69isDAQG6bkZERAgMDcflyxQuuLl26FI6Ojhg3btxb36OwsBA5OTlyNyKvZKB7MfIKi/HxmvNy1/5oyEPlZNf8+vTpQ9MCEqJntNqtLzMzExKJBPXr15fbXr9+fdy9e1fhc+Li4rBt2zYkJCQo9R6rVq3CkiVLqltqrcMYQ0GRBIwBgyIvlxvoLhv2QEMeKla2w0vLli21XRIhRAV61a/91atXGDVqFLZs2aL0jBrz5s1DaGgodz8nJ8fgm6dkC9uWXtuvNC9na7r29xbU25MQ/afVAHRwcICxsTEyMjLktmdkZMDJyanc/g8ePMDDhw/Ru3dvbpts/lETExMkJSWhcePGcs8RCAQQCAQaqF4/McbwPE9cLvy8nK3/f5UHwNyUBrtXhsKPkNqhSgH44MED7NixAw8ePMC6devg6OiIEydOoFGjRio1A/H5fHTo0AExMTHo168fgJJAi4mJwZQpU8rt36JFC9y8eVNu28KFC/Hq1SusW7eOvoTeQtG8nvELA2HBN6bQU9KzZ88o/AipJVTuBHP+/Hm0bt0af//9Nw4ePIjc3FwAwI0bNxAREaFyAaGhodiyZQt27dqFO3fuYNKkScjLy8PYsWMBAKNHj8a8efMAAGZmZmjVqpXczdbWFlZWVmjVqhX4fL7K728oKprXs64lHxZ8Ewo/JdWtWxf+/v4UfoTUAiqfAYaFhWH58uUIDQ2FlZUVt71Lly7YuHGjygUMGTIEz549Q3h4ONLT09G2bVtER0dzHWOEQiGMjLQ+WkPvlV7Rneb1rDojIyNs3boVz58/R7169bRdDiGkGpSeCUamTp06uHnzJjw8PGBlZYUbN27A09MTDx8+RIsWLfD69WtN1aoWhjgTjOy6n8/yMwCA20uCaF5PFYhEIqxfvx6rVq2CiQkdN0K0rcZngpGxtbVFWloaPDw85LZfv34dDRo0qHIhRDMU9fikkz7lle7wAgCrV6/WckWEEHVRuW1x6NChmDt3LtLT08Hj8SCVSnHx4kXMmjULo0eP1kSNpBryxRK58KP1/JRXtrcnTfROSO2i8hngypUrERISAldXV0gkEnh5eUEikWD48OFYuHChJmokVcQYw6DINzPqxC8MRF1LPl33UwINdSCk9lM5APl8PrZs2YJFixbh1q1byM3NRbt27dC0aVNN1EeqoXTHFy9nawo/JVH4EWIYVA7AuLg4dO7cGY0aNUKjRo00URPRgJJB7hR+byORSPDJJ59Q+BFiAFS+BtilSxd4eHhg/vz5SExM1ERNRE1K9++l7FOOsbEx1qxZg5YtW1L4EVLLqRyAT548wZdffonz58+jVatWaNu2LVavXo1Hjx5poj5SRWWv/5HKlR4N1K1bN9y4cYPCj5BaTuUAdHBwwJQpU3Dx4kU8ePAAgwYNwq5du+Du7o4uXbpookZSBWWv/1HPz4qJRCJ8+OGHSEpK4rYZG9PxIqS2q9YUKx4eHggLC8NXX32F1q1b4/z58+qqi6gRXf+rmKzDS1xcHMaPHw8V54UghOixKgfgxYsXMXnyZDg7O2P48OFo1aoVjh07ps7aiJpQ9ilWtrfn3r176Q8FQgyIyr1A582bh6ioKDx58gRdu3bFunXr0LdvX1hYWGiiPlIFJSu8S7Rdhk6joQ6EEJUD8M8//8Ts2bMxePBgpRelJTXnbYvdEgo/QkgJlQPw4sWLmqiDqElBEU199jZffvklhR8hRLkAPHLkCD755BOYmpriyJEjle7bp08ftRRGqo+mPlPsxx9/BAB89913FH6EGDClArBfv35IT0+Ho6Mjt3K7IjweDxIJXXvSBsYYCookctf+aL2/N/Ly8mBpaQkAsLOzw/79+7VcESFE25QKQKlUqvDfRDfQdb/KiUQiBAQEYMqUKZgxY4a2yyGE6AiVh0Hs3r0bhYWF5baLxWLs3r1bLUUR1ZS97gfQtT8ZWYeXBw8eYOPGjcjLy9N2SYQQHaHyivDGxsZIS0uDo6Oj3Pbnz5/D0dFR55tAa+OK8HmFxWgZcRJAyXU/C74xzE2p+ZN6exJSO2ltRXjGmMIv1kePHsHGxqbKhZCqKTvnpwXfGBZ8lf9bax0KP0LI2yj9TdmuXTvweDzweDx8/PHHMDF581SJRIKUlBR0795dI0WSiuWLac7Psij8CCHKUDoAZb0/ExISEBQUhDp16nCP8fl8uLu7Y+DAgWovkFRMKmXotSGOu09zfpY4duwYhR8h5K2UDsCIiAgAgLu7O4YMGQIzMzONFUXejrGS8EvJLOnU4eVsDQs+nf0BwMSJEwEAPXv2pPAjhFRI5U4w+q62dILJFxfDK7yk44uHgyViQv1hZGS4Z3+ya9BWVlbaLoUQomE12gnG3t4e9+7dg4ODA+zs7CptZsvKyqpyMaRqjk7tbNDhJ7vm5+TkhOjoaApBQohSlArA77//nvtS+f777+k6k44x5P+O0h1eACA7O5sCkBCiFKUCMDg4mPv3mDFjNFULISpR1NuzYcOG2i6LEKInVJ4J5tq1a7h58yZ3//Dhw+jXrx/mz58PsVis1uJIxQzrym15NNSBEFJdKgfgF198gXv37gEAkpOTMWTIEFhYWODAgQOYM2eO2gsk5ZUd/G5oKPwIIeqgcgDeu3cPbdu2BQAcOHAA/v7+2Lt3L3bu3In//e9/6q6PKFBQZNiD33NycvDq1SsKP0JItVRpKjTZihBnzpxBr169AACurq7IzMxUb3XkrQxx8HvLli1x7tw5WFtbU/gRQqpM5TNAHx8fLF++HD///DPOnz+Pnj17AgBSUlJQv359tRdIyit9/c9Qsk8kEiEu7s2sNy1btqTwI4RUi8oBuHbtWly7dg1TpkzBggUL0KRJEwDAb7/9Bj8/P7UXSOQZ4vU/2TW/oKAguRAkhJDqULkJtE2bNnK9QGVWr14NY2PDuhalDYY2+XXZDi9ubm7aLokQUktUed2cq1ev4s6dOwAALy8vtG/fXm1FEcUMbfJr6u1JCNEklQPw6dOnGDJkCM6fPw9bW1sAwMuXLxEQEICoqCjUq1dP3TUSGN7k1xR+hBBNU/ka4NSpU5Gbm4vbt28jKysLWVlZuHXrFnJycjBt2jRN1EggP/TBw8ESR6d2rrVnf+np6RR+hBCNU/kMMDo6GmfOnME777zDbfPy8sKmTZvQrVs3tRZH3ijd87O2T35tb28Pb29vAKDwI4RojMoBKJVKYWpqWm67qakpNz6QqFfZnp+19MSPw+fzERUVhaysLDg5OWm7HEJILaVyE2iXLl0wffp0PHnyhNv2+PFjzJw5Ex9//LFaiyMlDGHmF5FIhCVLlnB/RPH5fAo/QohGqXwGuHHjRvTp0wfu7u5c05RIJEKrVq3wyy+/qL1AIt/8WRt7fpZd0igiIkLLFRFCDIHKAejq6opr164hJiaGGwbxzjvvIDAwUO3Fkdrf/Fm2t+dnn32m7ZIIIQZCpQDct28fjhw5ArFYjI8//hhTp07VVF3k/9Xm5k8a6kAI0SalA3Dz5s0ICQlB06ZNYW5ujoMHD+LBgwdYvXq1JuszeLW1+ZPCjxCibUp3gtm4cSMiIiKQlJSEhIQE7Nq1Cz/88IMmazN4ZWd+qSXZB7FYjMDAQAo/QohWKR2AycnJCA4O5u4PHz4cxcXFSEtL00hhhk7RzC+1pfmTz+dj2bJlaNasGYUfIURrlA7AwsJCWFpavnmikRH4fD4KCgo0Upihq+0zvwwePBg3b96k8COEaI1KnWAWLVoECwsL7r5YLMaKFStgY2PDbVuzZo36qjNQjDHkiyXc/dow84tQKMT48eOxbds2LvT4fL6WqyKEGDKlA/DDDz9EUlKS3DY/Pz9u7BaAWnWGoi2MMXwaeRlXU19w2/T9sAqFQgQEBCA5ORnjx4/HyZMntV0SIYQoH4CxsbEaLIPIFBRJ5MLPx81Or6/9lQ4/T09PbN26VdslEUIIgGqsB0g0o/Swh/iFgahrydfbM+uy4UcdXgghukTluUCJ5pSd9cWCb0zhRwghGkIBqEPyxbVn1pfJkydT+BFCdBoFoI4oe/an77O+bN26FT179qTwI4ToLLoGqGWMMRQUScqd/Vnw9e/sr7CwEAKBAADg5OSEo0eParkiQgipWJXOAC9cuICRI0eiU6dOePz4MQDg559/Rlxc3FueSUqTDXnwCj8Jn+VnuO36ePYnEonQunVr7N69W9ulEEKIUlQOwP/9738ICgqCubk5rl+/jsLCQgBAdnY2Vq5cqfYCa7OyQx6AkmEP+nb2J5vY+r///sPy5cu5nwlCCNFlKgfg8uXLERkZiS1btsDU1JTb/v777+PatWtqLc6QxC8MROLSIL07+yu7qkNMTAzXDEoIIbpM5WuASUlJ+PDDD8ttt7GxwcuXL9VRk0Gy4BvDgq9fl2RpSSNCiD5T+QzQyckJ9+/fL7c9Li4Onp6eainKUJQe9K5vKPwIIfpO5QCcMGECpk+fjr///hs8Hg9PnjzBnj17MGvWLEyaNEkTNdZKZYc96Ju9e/dS+BFC9JrKbW5hYWGQSqX4+OOPkZ+fjw8//BACgQCzZs3C1KlTNVFjrVR6uSN9HPQ+Z84cACXrQlL4EUL0EY+xqjXEicVi3L9/H7m5ufDy8kKdOnXUXZtG5OTkwMbGBtnZ2bC2ttZaHXmFxWgZUbIqwu0lQbAU6P71vydPnsDe3h5mZmbaLoUQYsDU9T1e5Zlg+Hw+vLy84OvrW+3w27RpE9zd3WFmZoaOHTviypUrFe67ZcsWfPDBB7Czs4OdnR0CAwMr3V8XlW3+1IdOnyKRCB988AEGDBiA169fa7scQgipNpVPOwICAirtpn/27FmVXm/fvn0IDQ1FZGQkOnbsiLVr1yIoKAhJSUlwdHQst39sbCyGDRsGPz8/mJmZ4euvv0a3bt1w+/ZtNGjQQNWPoxX61vxZusMLAGRlZcHFxUXLVRFCSPWo3AQ6c+ZMuftFRUVISEjArVu3EBwcjHXr1qlUQMeOHfHuu+9i48aNAACpVApXV1dMnToVYWFhb32+RCKBnZ0dNm7ciNGjR791f203gTLG8DxPzM38ouvNn9TbkxCia9T1Pa7yN+/333+vcPvixYuRm5ur0muJxWJcvXoV8+bN47YZGRkhMDAQly8r10MyPz8fRUVFsLe3V/h4YWGh3MwkOTk5KtWoTvq22juFHyGkNlPbahAjR47E9u3bVXpOZmYmJBIJ6tevL7e9fv36SE9PV+o15s6dCxcXFwQGBip8fNWqVbCxseFu2vwC16fV3in8CCG1ndra3i5fvlzjvQO/+uorREVFITY2tsL3njdvHkJDQ7n7OTk5OvFFruurvaelpeHZs2cUfoSQWkvlABwwYIDcfcYY0tLSEB8fj0WLFqn0Wg4ODjA2NkZGRobc9oyMDDg5OVX63G+//RZfffUVzpw5gzZt2lS4n0Ag0Jm5KUtfbdX11d59fX1x5swZODs7U/gRQmollZtASzcn2tjYwN7eHh999BGOHz+OiIgIlV6Lz+ejQ4cOiImJ4bZJpVLExMSgU6dOFT7vm2++wbJlyxAdHQ0fHx9VP4JW6MPMLyKRSG5Cc19fXwo/QkitpdIZoEQiwdixY9G6dWvY2dmppYDQ0FAEBwfDx8cHvr6+WLt2LfLy8jB27FgAwOjRo9GgQQOsWrUKAPD1118jPDwce/fuhbu7O3etsE6dOjo9GF/Xhz7IrvllZWUhJiYG7du313ZJhBCiUSoFoLGxMbp164Y7d+6oLQCHDBmCZ8+eITw8HOnp6Wjbti2io6O5jjFCoRBGRm9OVDdv3gyxWIxPP/1U7nUiIiKwePFitdSkabq25FHZDi/16tXTdkmEEKJxKl8DbNWqFZKTk+Hh4aG2IqZMmYIpU6YofCw2Nlbu/sOHD9X2vjWp9PU/Hco+6u1JCDFYVVoQd9asWTh69CjS0tKQk5MjdyPl6er1Pwo/QoghU/oMcOnSpfjyyy/Ro0cPAECfPn3kmvEYY+DxeJBIJOqvUs/li3Xv+t/jx48p/AghBk3pAFyyZAkmTpyIc+fOabKeWqfs2Z+uXP+zs7ODm5sbAFD4EUIMktIBKJsy1N/fX2PF1EZle39a8LV/9gcAFhYWOHr0KF68eKE3k4gTQog6qXQNUBfOXPQJYwz54jdNwto++xMKhfj++++5P2YsLCwo/AghBkulXqDNmjV76xd4VlZWtQqqLaRShl4b4rizP0C7vT+FQiECAgK4JY3KrupBCCGGRqUAXLJkCWxsbDRVS63BWPnw0+bE16XDz9PTs9wYSkIIMUQqBeDQoUMVLlJL5JW+7ufhYImjUztrbe7PsuFHHV4IIaSE0gFI1/+q5ujUzlpb8JbCjxBCKqZ0JxgVF44n/09bfzcUFBSgS5cuFH6EEFIBpQNQKpVS86eSdOFvBXNzc8yZMwdNmjSh8COEEAXUtiI8KSHr/akLPv/8c/z7778UfoQQogAFoBrJen+mZOYBqPlpz0QiEfr374/MzExum7m5eY29PyGE6BPt9M6oZRhjKCiSyM35Kev9WVOdh0pPbA0Av//+e428LyGE6CsKwGpijOHTyMu4mvpCbvvRqZ1hZFTz4efp6Yn169fXyPsSQog+owCspnyxpFz4+bjZ1dicn7SkkeZIpVKIxWJtl0GIwTE1NYWxsea/QykAq6HsSg/xCwNhwTeGuWnNDHqn8NMcsViMlJQUSKVSbZdCiEGytbWFk5OTRr9LKQCroexKD3Ut+TU6YcCYMWMo/DSAMYa0tDQYGxvD1dUVRkbUV4yQmsIYQ35+Pp4+fQoAcHZ21th7UQBWQ+nxftpY6WHr1q0YP348du7cSeGnRsXFxcjPz4eLiwssLCy0XQ4hBkfWe/3p06dwdHTUWHMoBWAVlW3+rKnsKy4uholJyX+bh4cHYmJiauaNDYhEUrKEFZ/P13IlhBgu2R+fRUVFGgtAatuporLNnzUx3k8kEqF169Y4cuSIxt+L0Py3hGhTTfz+UQBWUU03f8o6vNy9exdz585FcXGxRt+PEEJqOwrAKig73Zmm/1Ap29vz1KlTXDMoIYSQqqEAVFFNT3dGQx2IuvF4PBw6dEjj7xMbGwsej4eXL19y2w4dOoQmTZrA2NgYM2bMwM6dO2Fra6uxGpKSkuDk5IRXr15p7D0MiVgshru7O+Lj47VdilpQAKpI0WK3mmr+pPAjqkpPT8fUqVPh6ekJgUAAV1dX9O7dWyudpfz8/JCWlgYbGxtu2xdffIFPP/0UIpEIy5Ytw5AhQ3Dv3j2N1TBv3jxMnToVVlZW5R5r0aIFBAIB0tPTyz3m7u6OtWvXltu+ePFitG3bVm6bto75gQMH0KJFC5iZmaF169Y4fvx4pfuPGTMGPB6v3K1ly5Zy+23atAnu7u4wMzNDx44dceXKFe4xPp+PWbNmYe7cuRr5TDWNArAaND3dWWRkJIWfDmCMIV9crJWbKutwPnz4EB06dMDZs2exevVq3Lx5E9HR0QgICEBISIgGj5BifD5fbiBzbm4unj59iqCgILi4uMDKygrm5ubVXmatqKhI4XahUIijR49izJgx5R6Li4tDQUEBPv30U+zatavK762tY37p0iUMGzYM48aNw/Xr19GvXz/069cPt27dqvA569atQ1paGncTiUSwt7fHoEGDuH327duH0NBQRERE4Nq1a/D29kZQUBA3Jg8ARowYgbi4ONy+fVtjn6+m0IUkFZX+PtL0tb9ly5YBACZOnEjhp0UFRRJ4hZ/UynsnLg2CBV+5X9PJkyeDx+PhypUrsLS05La3bNkSn332WYXPmzt3Ln7//Xc8evQITk5OGDFiBMLDw2FqagoAuHHjBmbMmIH4+HjweDw0bdoUP/74I3x8fJCamoopU6YgLi6Oax5bvXo1evTogdjYWAQEBODFixdISEhAQEAAAKBLly4AgHPnzuHhw4eYMWOGXDPp4cOHsWTJEiQmJsLFxQXBwcFYsGABd92bx+Phhx9+wIkTJxATE4PZs2dj8eLF5T7X/v374e3tjQYNGpR7bNu2bRg+fDj8/f0xffr0Kp/RVPWYV9e6devQvXt3zJ49G0DJd8Xp06exceNGREZGKnyOjY2N3Nn4oUOH8OLFC4wdO5bbtmbNGkyYMIHbFhkZiWPHjmH79u0ICwsDANjZ2eH9999HVFQU9x2lr+gMUEmMMeQVFmt8rb+MjAyuh6eRkRFWrFhB4UfeKisrC9HR0QgJCZH7Ipap7DqblZUVdu7cicTERKxbtw5btmzB999/zz0+YsQINGzYEP/88w+uXr2KsLAwLhxDQkJQWFiIP//8Ezdv3sTXX3+NOnXqlHsPPz8/JCUlAQD+97//IS0tDX5+fuX2u3DhAkaPHo3p06cjMTERP/74I3bu3IkVK1bI7bd48WL0798fN2/erDBoLly4AB8fn3LbX716hQMHDmDkyJHo2rUrsrOzceHChQqPT0Wqc8z37NmDOnXqVHqrrKbLly8jMDBQbltQUBAuX75cwTPK27ZtGwIDA+Hm5gag5Pre1atX5V7XyMgIgYGB5V7X19e3SsdM19AZoBIUrfigic4vsmt+7777Ln755Rfq6akjzE2Nkbg0SGvvrYz79++DMYYWLVqo/B4LFy7k/u3u7o5Zs2YhKioKc+bMAVDSlDh79mzutZs2bcrtLxQKMXDgQLRu3RoA4OnpqfA9+Hw+19Rpb28PJycnhfstWbIEYWFhCA4O5l5v2bJlmDNnDiIiIrj9hg8fLnfmokhqaqrCAIyKikLTpk25a19Dhw7Ftm3b8MEHH1T6emVV55j36dMHHTt2rHQfRWeuMunp6ahfv77ctvr16yu8nqnIkydPcOLECezdu5fblpmZCYlEovB17969K7fNxcUFqampSr2XLqNvWCUUFEnKhZ+6O7+UXc/v+fPn5X4QiXbweDylmyG1RZVrhWXt27cP69evx4MHD5Cbm4vi4mJYW1tzj4eGhmL8+PH4+eefERgYiEGDBqFx48YAgGnTpmHSpEk4deoUAgMDMXDgQLRp06bKtdy4cQMXL16UO+OTSCR4/fo18vPzudlBFAVbWQUFBTAzMyu3ffv27Rg5ciR3f+TIkfD398eGDRsUdpapSHWOuZWVlUrvpW67du2Cra0t+vXrV6Xnm5ubIz8/X71FaQE1gSqh9M95/MJAHJum3s4vinp7UvgRVTRt2hQ8Hq/cX+pvc/nyZYwYMQI9evTA0aNHcf36dSxYsEBuGajFixfj9u3b6NmzJ86ePQsvLy9uweXx48cjOTkZo0aNws2bN+Hj44MNGzZU+XPk5uZiyZIlSEhI4G43b97Ef//9Jxdmipocy3JwcMCLF/JLlSUmJuKvv/7CnDlzYGJiAhMTE7z33nvIz89HVFQUt5+1tTWys7PLvebLly+562hVPeZA9ZtAnZyckJGRIbctIyOjwjPr0hhj2L59O0aNGiU33Z+DgwOMjY2Vet2srCzUq1dPmY+q0ygA36LsnJ8WfPUudURDHYg62NvbIygoCJs2bUJeXl65x0t3Mint0qVLcHNzw4IFC+Dj44OmTZsqbNpq1qwZZs6ciVOnTmHAgAHYsWMH95irqysmTpyIgwcP4ssvv8SWLVuq/Dnat2+PpKQkNGnSpNxN1VU52rVrh8TERLlt27Ztw4cffogbN27IhWxoaCi2bdvG7de8eXNcvXq13Gteu3YNzZo1A1D1Yw6UNIGWfn9Ft8rOcjt16lRumMXp06fRqVOnCp8jc/78edy/fx/jxo2T287n89GhQwe515VKpYiJiSn3urdu3UK7du3e+l46jxmY7OxsBoBlZ2crtX9eYRFzm3uUuc09yj5Z+yeTSqVqq0UoFDJPT08GgHl6ejKhUKi21yZVV1BQwBITE1lBQYG2S1HJgwcPmJOTE/Py8mK//fYbu3fvHktMTGTr1q1jLVq04PYDwH7//XfGGGOHDx9mJiYm7Ndff2X3799n69atY/b29szGxoYxxlh+fj4LCQlh586dYw8fPmRxcXGscePGbM6cOYwxxqZPn86io6NZcnIyu3r1KuvYsSMbPHgwY4yxc+fOMQDsxYsXjDHGXrx4wQCwc+fOcbXs2LGDey/GGIuOjmYmJiZs8eLF7NatWywxMZH9+uuvbMGCBQrrr8yRI0eYo6MjKy4uZowxJhaLWb169djmzZvL7ZuYmMgAsFu3bjHGGLt48SIzMjJiy5cvZ4mJiezmzZts/vz5zMTEhN28eVPlY65uFy9eZCYmJuzbb79ld+7cYREREczU1FSutrCwMDZq1Khyzx05ciTr2LGjwteNiopiAoGA7dy5kyUmJrLPP/+c2drasvT0dLn93Nzc2O7du9X7ocqo7PdQ1e/xilAAvkXpAMx9XaTWWmJiYphAIKDw0zH6GoCMMfbkyRMWEhLC3NzcGJ/PZw0aNGB9+vSRC52yATJ79mxWt25dVqdOHTZkyBD2/fffc6FUWFjIhg4dylxdXRmfz2cuLi5sypQp3LGZMmUKa9y4MRMIBKxevXps1KhRLDMzkzFWtQBkrCQE/fz8mLm5ObO2tma+vr7sp59+qrD+ihQVFTEXFxcWHR3NGGPst99+Y0ZGRuW+zGXeeecdNnPmTO7+yZMn2fvvv8/s7OxY3bp12UcffcTOnz9f7nnKHHNN2L9/P2vWrBnj8/msZcuW7NixY3KPBwcHM39/f7ltL1++ZObm5nLHs6wNGzawRo0aMT6fz3x9fdlff/0l9/ilS5eYra0ty8/PV9tnUaQmApDHWDWu5OqhnJwc2NjYIDs7W+5Cf0XyCovRMqJkDJgqY7KUdfbsWTRt2pSaPXXI69evkZKSAg8PD4WdKIj+2LRpE44cOYKTJ7UzjrM2GjJkCLy9vTF//nyNvk9lv4eqfo9XRLe7tmlZ2Umv1UEoFKKgoADNmzcH8GZQMCFE/b744gu8fPkSr1690mqvy9pCLBajdevWmDlzprZLUQsKwAowDUx6LRQKERAQgPz8fMTGxnIhSAjRDBMTEyxYsEDbZdQafD5fbtyovqNeoBVQ96TXsvBLTk6GhYUFN56JEEKIdlAAKqG6k16XDj8a6kAIIbqBAlAJ1Rn2R+FHCCG6iQJQg0QiEYUfIYToKOoEUwZjDAVFEuSLJdV+LSsrK9jb2wMAhR8hhOgYCsBSmIJVH6rD1tYWp0+fRm5uLho2bKiW1ySEEKIe1ARaStlVHwDAx81OpeEPIpEI27dv5+7b2tpS+BGdwuPxcOjQIW2XobKdO3dWusaeJsTGxoLH41U6rycAxMTE4J133oFEUv2WI0Pw3nvv4X//+5+2y6AAlGGMyTV7xi8MROLSIByY2Enp4Q+yia3HjRsnF4KE1JT09HRMnToVnp6eEAgEcHV1Re/evctNnEzUa86cOVi4cCGMjeX/WC4oKIC9vT0cHBxQWFhY7nkV/TEyZsyYcksV3b9/H2PHjkXDhg0hEAjg4eGBYcOGIT4+Xp0fpZxNmzbB3d0dZmZm6NixI65cuVLp/jt37gSPx5O7lZ3JZeHChQgLC4NUKtVk6W9FAYiSGV96ro+Dz/Iz3DYLvjEs+CYqh5+sw0vXrl01VS4hCj18+BAdOnTA2bNnsXr1aty8eRPR0dEICAhASEiItsurteLi4vDgwQMMHDiw3GP/+9//0LJlS7Ro0aJaZ93x8fHo0KED7t27hx9//BGJiYn4/fff0aJFC3z55ZfVqL5y+/btQ2hoKCIiInDt2jV4e3sjKCgIT58+rfR51tbWSEtL425lVxj55JNP8OrVK5w4cUJjtSvD4ANQNuOLbNA7ULVmT1rSqPbLy8ur8Pb69Wul9y0oKFBqX1VNnjwZPB4PV65cwcCBA9GsWTO0bNkSoaGh+Ouvv+T2zczMRP/+/WFhYYGmTZviyJEj3GMSiQTjxo2Dh4cHzM3N0bx5c6xbt07u+bIzlG+//RbOzs6oW7cuQkJCUFRUxO1TWFiIuXPnwtXVFQKBAE2aNJFbcujWrVv45JNPUKdOHdSvXx+jRo1CZmamSp/58OHDaN++PczMzODp6YklS5aguLgYQMmq8UOGDJHbv6ioCA4ODti9ezeAkuV+Vq1axX1Wb29v/PbbbyrVEBUVha5duyqcN3bbtm0YOXIkRo4cKffZVcEYw5gxY9C0aVNcuHABPXv2ROPGjdG2bVtERETg8OHDVXpdZaxZswYTJkzA2LFj4eXlhcjISFhYWLy1hYvH48HJyYm7lV3f1NjYGD169JBbg1ErqjWVth4qO4t46dUePlp9juW+LlJpySNa0qj2qWgWegAV3nr06CG3r4WFRYX7lp2h38HBQeF+qnj+/Dnj8Xhs5cqVb90XAGvYsCHbu3cv+++//9i0adNYnTp12PPnzxljJcsGhYeHs3/++YclJyezX375hVlYWLB9+/ZxrxEcHMysra3ZxIkT2Z07d9gff/zBLCws5FYZGDx4MHN1dWUHDx5kDx48YGfOnGFRUVGMsZKVIerVq8fmzZvH7ty5w65du8a6du3KAgICKqy77MoRf/75J7O2tmY7d+5kDx48YKdOnWLu7u5s8eLFjDHGjh49yszNzdmrV6+45/zxxx/M3Nyc5eTkMMYYW758OWvRogWLjo5mDx48YDt27GACgYDFxsYyxsqvaKFImzZt2FdffVVu+/3795lAIGBZWVns+fPnzMzMjD18+LDc/4WilS2Cg4NZ3759GWOMXbt2jQFge/furbCGiqxYsYJZWlpWektNTVX43MLCQmZsbFyuvtGjR7M+ffpU+J47duxgxsbGrFGjRqxhw4asT58+3DJTpW3evJm5ublV+Dq0HJIGVBaAqi53lJOTQ+FXC+ljAP79998MADt48OBb9wXAFi5cyN3Pzc1lANiJEycqfE5ISAgbOHAgdz84OJi5ublxa+0xxtigQYPYkCFDGGOMJSUlMQDs9OnTCl9v2bJlrFu3bnLbRCIRA8CSkpIUPqdsAH788cflAv/nn39mzs7OjLGS5ZAcHBzk1q0bNmwYV+Pr16+ZhYUFu3TpktxrjBs3jg0bNowxplwA2tjYKFwbb/78+axfv37c/b59+7KIiAi5fZQJwH379jEA7Nq1axXWUJHnz5+z//77r9JbUZHi773Hjx8zAOWOz+zZs5mvr2+F73np0iW2a9cudv36dRYbG8t69erFrK2tmUgkktvv8OHDzMjIiEkkEoWvUxMBSMMgSlF1xhcrKytMmDABW7ZsoWZPA5Cbm1vhY2U7P1R2jaTsyuYPHz6sVl1ASTOZKtq0acP929LSEtbW1nI1b9q0Cdu3b+dWLxGLxWjbtq3ca7Rs2VLuczs7O+PmzZsAgISEBBgbG8Pf31/h+9+4cQPnzp1DnTp1yj324MEDbtX1yty4cQMXL17EihUruG0SiQSvX79Gfn4+LCwsMHjwYOzZswejRo1CXl4eDh8+zDW73b9/H/n5+eWu14vFYpVWOy8oKCjX/CmRSLBr1y65puORI0di1qxZCA8PV2l1e1X/b0uzt7fnxiLXlE6dOsmtIO/n54d33nkHP/74I5YtW8ZtNzc3h1QqRWFhIczNzWu0RhkKwGoKCwtDSEgILbViACwtLbW+b0WaNm0KHo+Hu3fvKrW/qamp3H0ej8f1yIuKisKsWbPw3XffoVOnTrCyssLq1avx999/K/0ab/tCy83NRe/evfH111+Xe8zZ2Vmpz5Cbm4slS5ZgwIAB5R6TBdKIESPg7++Pp0+f4vTp0zA3N0f37t255wPAsWPH0KBBA7nnCwQCpWoAAAcHB7x4IT986uTJk3j8+HG5a5ASiQQxMTFc6FpZWSE7O7vca758+RI2NjYAwP0xcPfuXZWCGQBWrlyJlStXVrpPYmIiGjVqVG67g4MDjI2NkZGRIbc9IyMDTk5OStdgamqKdu3a4f79+3Lbs7KyYGlpqbXwA6gTDFT940okEmHkyJF49eoVt43Cj2ibvb09goKCsGnTJoUdaN42jq20ixcvws/PD5MnT0a7du3QpEkTPHjwQKV6WrduDalUivPnzyt8vH379rh9+zbc3d3RpEkTuZuyfxC0b98eSUlJ5Z7fpEkT7gzLz88Prq6u2LdvH/bs2YNBgwZxwe3l5QWBQAChUFju+aq05rRr1w6JiYly27Zt24ahQ4ciISFB7jZ06FC5zjDNmzfH1atX5Z4rkUhw48YNLvjatm0LLy8vfPfddwqHDVT2fztx4sRyNZS9ubi4KHwun89Hhw4d5IbQSKVSxMTEyJ3hvY1EIsHNmzfL/WFz69YtlQNd3Qz6DJAxhkGRl5Xev3RvTwD45ZdfNFUaISrbtGkT3n//ffj6+mLp0qVo06YNiouLcfr0aWzevBl37txR6nWaNm2K3bt34+TJk/Dw8MDPP/+Mf/75Bx4eHkrX4u7ujuDgYHz22WdYv349vL29kZqaiqdPn2Lw4MEICQnBli1bMGzYMMyZMwf29va4f/8+oqKisHXr1nJNyoqEh4ejV69eaNSoET799FMYGRnhxo0buHXrFpYvX87tN3z4cERGRuLevXs4d+4ct93KygqzZs3CzJkzIZVK0blzZ2RnZ+PixYuwtrZGcHCwUp81KCgIu3bt4u4/e/YMf/zxB44cOYJWrVrJ7Tt69Gj0798fWVlZsLe3R2hoKMaNG4cWLVqga9euyMvLw4YNG/DixQuMHz8eQMmZ9Y4dOxAYGIgPPvgACxYsQIsWLZCbm4s//vgDp06dqvAPjeo2gYaGhiI4OBg+Pj7w9fXF2rVrkZeXh7Fjx8p9pgYNGmDVqlUAgKVLl+K9995DkyZN8PLlS6xevRqpqanc55G5cOECunXrVuXa1KJaVxD1UOmLp6U7wHyy9s9Ke39Sb0/DUdnFd1335MkTFhISwtzc3Bifz2cNGjRgffr0YefOneP2gYKOFzY2NmzHjh2MsZLOIWPGjGE2NjbM1taWTZo0iYWFhTFvb29u/9KdNGSmT58u18GnoKCAzZw5kzk7OzM+n8+aNGnCtm/fzj1+79491r9/f2Zra8vMzc1ZixYt2IwZMyr8PSzbCYYxxqKjo5mfnx8zNzdn1tbWzNfXV64nKmOMJSYmMgDMzc2t3GtLpVK2du1a1rx5c2Zqasrq1avHgoKC2Pnz5xljynWCkfXwvHv3LmOMsW+//ZbZ2toysVhcbt/CwkJma2vL1q1bx23bs2cP69ChA7OysmL169dnPXr0YDdu3Cj33KSkJDZ69Gjm4uLC+Hw+c3NzY8OGDatS5xhVbNiwgTVq1Ijx+Xzm6+vL/vrrL7nH/f39WXBwMHd/xowZ3P6yz1O2xkePHjFTU9NyHWNKq4lOMDzGqnGFVQ/l5OTAxsYG2dnZMDGzgFf4SQDA7SVBsBQoPiGmcX6G5fXr10hJSYGHh4fCsV2ElDV79mzk5OTgxx9/1HYpemHu3Ll48eIFfvrppwr3qez3sPT3uLW1dZXrMPhrgDIV9QCl8COEvM2CBQvg5uam9am99IWjo6Ncj1BtMehrgG/DGMPgwYMp/AghlbK1tcX8+fO1XYbe0OT0baqgM8BK8Hg8bNmyBe+99x6FHyGE1DJ0BqiARCLheqG1atUKly5dUnpSbEIIIfqBzgDLEIlEaNeuHWJjY7ltFH6GycD6hxGiU2ri948CsBRZh5ebN29i2rRptLilgZKd/YvFYi1XQojhys/PB1B+xiF10okm0E2bNmH16tVIT0+Ht7c3NmzYAF9f3wr3P3DgABYtWoSHDx+iadOm+Prrr9GjR49q1fBIJMIn3QK5Di/Hjh1TajAuqX1MTExgYWGBZ8+ewdTUVKV5Gwkh1cMYQ35+Pp4+fQpbW1uNfg9rPQBlCy5GRkaiY8eOWLt2LYKCgpCUlARHR8dy+1+6dAnDhg3DqlWr0KtXL+zduxf9+vXDtWvXys26oKzinGfo3jUQKSnU25OUNHk7OzsjJSWl3EKehJCaYWtrq9Kco1Wh9YHwHTt2xLvvvouNGzcCKJlrztXVFVOnTkVYWFi5/YcMGYK8vDwcPXqU2/bee++hbdu2iIyMfOv7lR0I32zGL8j4dR6KX6ZT+BE5UqmUmkEJ0QJTU9NKz/zUNRBeq2eAYrEYV69exbx587htRkZGCAwMxOXLiufovHz5MkJDQ+W2BQUF4dChQwr3LywsRGFhIXc/JydH7vGcKwdR/DIdHh4UfkSekZERzQRDSC2m1YsbmZmZkEgkqF+/vtz2+vXrIz09XeFz0tPTVdp/1apVsLGx4W5lA84u4DNYdeiN6NNnKPwIIcSA1Pqr+/PmzUN2djZ3E4lE3GPmpsa4s6IX0i8dRFNPd+0VSQghpMZptQm0KgsuOjk5qbS/QCCocHFLHo8HC77W+wERQgjRAq1++5decLFfv34A3iy4OGXKFIXP6dSpE2JiYjBjxgxu2+nTp5VeoFHW56fstUBCCCH6Qfb9Xe0+nNVaTEkNoqKimEAgYDt37mSJiYns888/Z7a2tiw9PZ0xxtioUaNYWFgYt//FixeZiYkJ+/bbb9mdO3dYREQEMzU1ZTdv3lTq/UQiEQNAN7rRjW500/NbZesJKkPr7X9DhgzBs2fPEB4ejvT0dLRt2xbR0dFcRxehUCg3ENnPzw979+7FwoULMX/+fDRt2hSHDh1Segygi4sLRCIRrKyswOPxkJOTA1dXV4hEomp1p62t6Pi8HR2jytHxeTs6RpUre3wYY3j16hVcXFyq9bpaHweobeoaT1Jb0fF5OzpGlaPj83Z0jCqnqeNT63uBEkIIIYpQABJCCDFIBh+AAoEAERERFQ6VMHR0fN6OjlHl6Pi8HR2jymnq+Bj8NUBCCCGGyeDPAAkhhBgmCkBCCCEGiQKQEEKIQaIAJIQQYpAMIgA3bdoEd3d3mJmZoWPHjrhy5Uql+x84cAAtWrSAmZkZWrdujePHj9dQpdqhyvHZsmULPvjgA9jZ2cHOzg6BgYFvPZ61gao/QzJRUVHg8XjcXLe1larH5+XLlwgJCYGzszMEAgGaNWtGv2dlrF27Fs2bN4e5uTlcXV0xc+ZMvH79uoaqrVl//vknevfuDRcXF/B4vArXdy0tNjYW7du3h0AgQJMmTbBz507V37haE6npgaioKMbn89n27dvZ7du32YQJE5itrS3LyMhQuP/FixeZsbEx++abb1hiYiJbuHChSnON6htVj8/w4cPZpk2b2PXr19mdO3fYmDFjmI2NDXv06FENV15zVD1GMikpKaxBgwbsgw8+YH379q2ZYrVA1eNTWFjIfHx8WI8ePVhcXBxLSUlhsbGxLCEhoYYrrzmqHqM9e/YwgUDA9uzZw1JSUtjJkyeZs7MzmzlzZg1XXjOOHz/OFixYwA4ePMgAsN9//73S/ZOTk5mFhQULDQ1liYmJbMOGDczY2JhFR0er9L61PgB9fX1ZSEgId18ikTAXFxe2atUqhfsPHjyY9ezZU25bx44d2RdffKHROrVF1eNTVnFxMbOysmK7du3SVIlaV5VjVFxczPz8/NjWrVtZcHBwrQ5AVY/P5s2bmaenJxOLxTVVotapeoxCQkJYly5d5LaFhoay999/X6N16gJlAnDOnDmsZcuWctuGDBnCgoKCVHqvWt0EKhaLcfXqVQQGBnLbjIyMEBgYiMuXLyt8zuXLl+X2B4CgoKAK99dnVTk+ZeXn56OoqAj29vaaKlOrqnqMli5dCkdHR4wbN64mytSaqhyfI0eOoFOnTggJCUH9+vXRqlUrrFy5EhKJpKbKrlFVOUZ+fn64evUq10yanJyM48ePo0ePHjVSs65T1/e01leD0KTMzExIJBJuZQmZ+vXr4+7duwqfk56ernD/9PR0jdWpLVU5PmXNnTsXLi4u5X4Ya4uqHKO4uDhs27YNCQkJNVChdlXl+CQnJ+Ps2bMYMWIEjh8/jvv372Py5MkoKipCRERETZRdo6pyjIYPH47MzEx07twZjDEUFxdj4sSJmD9/fk2UrPMq+p7OyclBQUEBzM3NlXqdWn0GSDTrq6++QlRUFH7//XeYmZlpuxyd8OrVK4waNQpbtmyBg4ODtsvRSVKpFI6Ojvjpp5/QoUMHDBkyBAsWLEBkZKS2S9MZsbGxWLlyJX744Qdcu3YNBw8exLFjx7Bs2TJtl1ar1OozQAcHBxgbGyMjI0Nue0ZGBpycnBQ+x8nJSaX99VlVjo/Mt99+i6+++gpnzpxBmzZtNFmmVql6jB48eICHDx+id+/e3DapVAoAMDExQVJSEho3bqzZomtQVX6GnJ2dYWpqCmNjY27bO++8g/T0dIjFYvD5fI3WXNOqcowWLVqEUaNGYfz48QCA1q1bIy8vD59//jkWLFggt0aqIaroe9ra2lrpsz+glp8B8vl8dOjQATExMdw2qVSKmJgYdOrUSeFzOnXqJLc/AJw+fbrC/fVZVY4PAHzzzTdYtmwZoqOj4ePjUxOlao2qx6hFixa4efMmEhISuFufPn0QEBCAhIQEuLq61mT5GleVn6H3338f9+/f5/4wAIB79+7B2dm51oUfULVjlJ+fXy7kZH8wMJq+WX3f06r1z9E/UVFRTCAQsJ07d7LExET2+eefM1tbW5aens4YY2zUqFEsLCyM2//ixYvMxMSEffvtt+zOnTssIiKi1g+DUOX4fPXVV4zP57PffvuNpaWlcbdXr15p6yNonKrHqKza3gtU1eMjFAqZlZUVmzJlCktKSmJHjx5ljo6ObPny5dr6CBqn6jGKiIhgVlZW7Ndff2XJycns1KlTrHHjxmzw4MHa+gga9erVK3b9+nV2/fp1BoCtWbOGXb9+naWmpjLGGAsLC2OjRo3i9pcNg5g9eza7c+cO27RpEw2DqMiGDRtYo0aNGJ/PZ76+vuyvv/7iHvP392fBwcFy++/fv581a9aM8fl81rJlS3bs2LEarrhmqXJ83NzcGIByt4iIiJovvAap+jNUWm0PQMZUPz6XLl1iHTt2ZAKBgHl6erIVK1aw4uLiGq66ZqlyjIqKitjixYtZ48aNmZmZGXN1dWWTJ09mL168qPnCa8C5c+cUfq/IjklwcDDz9/cv95y2bdsyPp/PPD092Y4dO1R+X1oOiRBCiEGq1dcACSGEkIpQABJCCDFIFICEEEIMEgUgIYQQg0QBSAghxCBRABJCCDFIFICEEEIMEgUgIYQQg0QBSCq0c+dO2NraaruMKuPxeDh06FCl+4wZMwb9+vWrkXp0zaJFi/D555/XyHvFxsaCx+Ph5cuXle7n7u6OtWvXarQWVd9DXb8Hyvw8qioxMRENGzZEXl6eWl/XUFAA1nJjxowBj8crd7t//762S8POnTu5eoyMjNCwYUOMHTsWT58+Vcvrp6Wl4ZNPPgEAPHz4EDwer9wafevWrcPOnTvV8n4VWbx4Mfc5jY2N4erqis8//xxZWVkqvY46wzo9PR3r1q3DggUL5F5fViefz0eTJk2wdOlSFBcXV/v9/Pz8kJaWBhsbGwAVh8o///xTY6GsD1asWAE/Pz9YWFgoPF5eXl547733sGbNmpovrhagADQA3bt3R1pamtzNw8ND22UBAKytrZGWloZHjx5hy5YtOHHiBEaNGqWW13ZycoJAIKh0Hxsbmxo5y23ZsiXS0tIgFAqxY8cOREdHY9KkSRp/34ps3boVfn5+cHNzk9su+1n577//8OWXX2Lx4sVYvXp1td+Pz+fDyckJPB6v0v3q1asHCwuLar9fbSEWizFo0KBKf1bGjh2LzZs3q+UPFUNDAWgABAIBnJyc5G7GxsZYs2YNWrduDUtLS7i6umLy5MnIzc2t8HVu3LiBgIAAWFlZwdraGh06dEB8fDz3eFxcHD744AOYm5vD1dUV06ZNe2vTDI/Hg5OTE1xcXPDJJ59g2rRpOHPmDAoKCiCVSrF06VI0bNgQAoEAbdu2RXR0NPdcsViMKVOmwNnZGWZmZnBzc8OqVavkXlvW5CQL/Hbt2oHH4+Gjjz4CIH9W9dNPP8HFxUVumR4A6Nu3Lz777DPu/uHDh9G+fXuYmZnB09MTS5YseeuXj4mJCZycnNCgQQMEBgZi0KBBOH36NPe4RCLBuHHj4OHhAXNzczRv3hzr1q3jHl+8eDF27dqFw4cPc2dpsbGxAACRSITBgwfD1tYW9vb26Nu3Lx4+fFhpPVFRUXJrFsrIflbc3NwwadIkBAYG4siRIwCAFy9eYPTo0bCzs4OFhQU++eQT/Pfff9xzU1NT0bt3b9jZ2cHS0hItW7bE8ePHAcg3gcbGxmLs2LHIzs7mPsvixYsByDdPDh8+HEOGDJGrr6ioCA4ODti9ezeAkmWFVq1axR03b29v/Pbbb5V+9rKU/T04dOgQmjZtCjMzMwQFBUEkEsk9XpWfi7dZsmQJZs6cidatW1e4T9euXZGVlYXz589X670MEQWgATMyMsL69etx+/Zt7Nq1C2fPnsWcOXMq3H/EiBFo2LAh/vnnH1y9ehVhYWEwNTUFULIQbPfu3TFw4ED8+++/2LdvH+Li4jBlyhSVajI3N4dUKkVxcTHWrVuH7777Dt9++y3+/fdfBAUFoU+fPtyX7vr163HkyBHs378fSUlJ2LNnD9zd3RW+7pUrVwAAZ86cQVpaGg4ePFhun0GDBuH58+c4d+4cty0rKwvR0dEYMWIEAODChQsYPXo0pk+fjsTERPz444/YuXMnVqxYofRnfPjwIU6ePCm39p1UKkXDhg1x4MABJCYmIjw8HPPnz8f+/fsBALNmzcLgwYPlzub9/PxQVFSEoKAgWFlZ4cKFC7h48SLq1KmD7t27QywWK3z/rKwsJCYmKrWWo7m5Ofc6Y8aMQXx8PI4cOYLLly+DMYYePXqgqKgIABASEoLCwkL8+eefuHnzJr7++mvUqVOn3Gv6+flh7dq13Nl/WloaZs2aVW6/ESNG4I8//pALo5MnTyI/Px/9+/cHAKxatQq7d+9GZGQkbt++jZkzZ2LkyJEqhYEyvwf5+flYsWIFdu/ejYsXL+Lly5cYOnQo93hVfi4++ugjjBkzRuk6K8Ln89G2bVtcuHCh2q9lcKq5igXRccHBwczY2JhZWlpyt08//VThvgcOHGB169bl7u/YsYPZ2Nhw962srNjOnTsVPnfcuHHs888/l9t24cIFZmRkxAoKChQ+p+zr37t3jzVr1oz5+PgwxhhzcXFhK1askHvOu+++yyZPnswYY2zq1KmsS5cuTCqVKnx9AOz3339njDGWkpLCALDr16/L7VN2qaK+ffuyzz77jLv/448/MhcXFyaRSBhjjH388cds5cqVcq/x888/M2dnZ4U1MFaytpuRkRGztLRkZmZm3FIva9asqfA5jDEWEhLCBg4cWGGtsvdu3ry53DEoLCxk5ubm7OTJkwpfV7bmmlAolNte+vWlUik7ffo0EwgEbNasWezevXsMALt48SK3f2ZmJjM3N2f79+9njDHWunVrtnjxYoXvKVvuRracT9n/exk3Nzf2/fffM8ZKlgRycHBgu3fv5h4fNmwYGzJkCGOMsdevXzMLCwt26dIludcYN24cGzZsmMI6yr6HIop+DwDILV90584dBoD9/fffjDHlfi5K/zwy9vZ1JEur6HjJ9O/fn40ZM0ap1yJvmGgreEnNCQgIwObNm7n7lpaWAErOhlatWoW7d+8iJycHxcXFeP36NfLz8xVehwkNDcX48ePx888/c814jRs3BlDSPPrvv/9iz5493P6MMUilUqSkpOCdd95RWFt2djbq1KkDqVSK169fo3Pnzti6dStycnLw5MkTvP/++3L7v//++7hx4waAkjOSrl27onnz5ujevTt69eqFbt26VetYjRgxAhMmTMAPP/wAgUCAPXv2YOjQodzq3Ddu3MDFixfl/rKXSCSVHjcAaN68OY4cOYLXr1/jl19+QUJCAqZOnSq3z6ZNm7B9+3YIhUIUFBRALBajbdu2ldZ748YN3L9/H1ZWVnLbX79+jQcPHih8TkFBAQDAzMys3GNHjx5FnTp1UFRUBKlUiuHDh2Px4sWIiYmBiYkJOnbsyO1bt25dNG/eHHfu3AEATJs2DZMmTcKpU6cQGBiIgQMHok2bNpXWXxkTExMMHjwYe/bswahRo5CXl4fDhw8jKioKAHD//n3k5+eja9eucs8Ti8Vo166d0u+jzO+BiYkJ3n33Xe45LVq0gK2tLe7cuQNfX98q/VzImnHVwdzcHPn5+Wp7PUNBAWgALC0t0aRJE7ltDx8+RK9evTBp0iSsWLEC9vb2iIuLw7hx4yAWixX+wi5evBjDhw/HsWPHcOLECURERCAqKgr9+/dHbm4uvvjiC0ybNq3c8xo1alRhbVZWVrh27RqMjIzg7OwMc3NzAEBOTs5bP1f79u2RkpKCEydO4MyZMxg8eDACAwNVvgZUWu/evcEYw7Fjx/Duu+/iwoUL+P7777nHc3NzsWTJEgwYMKDccxUFioysVyUAfPXVV+jZsyeWLFmCZcuWASi5Jjdr1ix899136NSpE6ysrLB69Wr8/fffldabm5uLDh06yP3hIVOvXj2Fz3FwcABQck2v7D6yP5b4fD5cXFxgYqL8V8T48eMRFBSEY8eO4dSpU1i1ahW+++67ckGvihEjRsDf3x9Pnz7F6dOnYW5uju7duwMA1zR67NgxNGjQQO55b+v8JFOV3wNFqvpzoS5ZWVncH6NEeRSABurq1auQSqX47rvvuLMb2fWmyjRr1gzNmjXDzJkzMWzYMOzYsQP9+/dH+/btkZiYWC5o38bIyEjhc6ytreHi4oKLFy/C39+f237x4kX4+vrK7TdkyBAMGTIEn376Kbp3746srCzY29vLvZ7septEIqm0HjMzMwwYMAB79uzB/fv30bx5c7Rv3557vH379khKSlL5c5a1cOFCdOnSBZMmTeI+p5+fHyZPnsztU/YMjs/nl6u/ffv22LdvHxwdHWFtba3Uezdu3BjW1tZITExEs2bN5B5T9McSALzzzjsoLi7G33//DT8/PwDA8+fPkZSUBC8vL24/V1dXTJw4ERMnTsS8efOwZcsWhQGo6LMo4ufnB1dXV+zbtw8nTpzAoEGDuOvOXl5eEAgEEAqFcj8jqlD296C4uBjx8fHcz15SUhJevnzJtWyo6+eiqm7duoVPP/1UK++tz6gTjIFq0qQJioqKsGHDBiQnJ+Pnn39GZGRkhfsXFBRgypQpiI2NRWpqKi5evIh//vmH+wKYO3cuLl26hClTpiAhIQH//fcfDh8+rHInmNJmz56Nr7/+Gvv27UNSUhLCwsKQkJCA6dOnAyjpvffrr7/i7t27uHfvHg4cOAAnJyeFwxocHR1hbm6O6OhoZGRkIDs7u8L3HTFiBI4dO4bt27dznV9kwsPDsXv3bixZsgS3b9/GnTt3EBUVhYULF6r02Tp16oQ2bdpg5cqVAICmTZsiPj4eJ0+exL1797Bo0SL8888/cs9xd3fHv//+i6SkJGRmZqKoqAgjRoyAg4MD+vbtiwsXLiAlJQWxsbGYNm0aHj16pPC9jYyMEBgYiLi4OKXrbdq0Kfr27YsJEyYgLi4ON27cwMiRI9GgQQP07dsXADBjxgycPHkSKSkpuHbtGs6dO1dh07e7uztyc3MRExODzMzMSpvvhg8fjsjISJw+fVru/8PKygqzZs3CzJkzsWvXLjx48ADXrl3Dhg0bsGvXLqU+l7K/B6amppg6dSr+/vtvXL16FWPGjMF7773HBWJVfi5Gjx6NefPmVVqfUChEQkIChEIhJBIJEhISkJCQINcx6OHDh3j8+DECAwOV+sykFG1fhCSapajjhMyaNWuYs7MzMzc3Z0FBQWz37t0VdlQoLCxkQ4cOZa6urozP5zMXFxc2ZcoUuQ4uV65cYV27dmV16tRhlpaWrE2bNuU6sZT2tgv7EomELV68mDVo0ICZmpoyb29vduLECe7xn376ibVt25ZZWloya2tr9vHHH7Nr165xj6NMp4MtW7YwV1dXZmRkxPz9/Ss8PhKJhDk7OzMA7MGDB+Xqio6OZn5+fszc3JxZW1szX19f9tNPP1X4OSIiIpi3t3e57b/++isTCARMKBSy169fszFjxjAbGxtma2vLJk2axMLCwuSe9/TpU+74AmDnzp1jjDGWlpbGRo8ezRwcHJhAIGCenp5swoQJLDs7u8Kajh8/zho0aMB17qnoWJSWlZXFRo0axWxsbLifmXv37nGPT5kyhTVu3JgJBAJWr149NmrUKJaZmckYK98JhjHGJk6cyOrWrcsAsIiICMaY4g4qiYmJDABzc3Mr1+FJKpWytWvXsubNmzNTU1NWr149FhQUxM6fP1/h5yj7Hsr+Hvzvf/9jnp6eTCAQsMDAQJaamir3um/7uSj78+jv78+Cg4MrrJOxkv8T/H+nqdI32f89Y4ytXLmSBQUFVfo6RDEeY4xpI3gJIdrDGEPHjh25pmyin8RiMZo2bYq9e/eW6zBG3o6aQAkxQDweDz/99BPNHqLnhEIh5s+fT+FXRXQGSAghxCDRGSAhhBCDRAFICCHEIFEAEkIIMUgUgIQQQgwSBSAhhBCDRAFICCHEIFEAEkIIMUgUgIQQQgwSBSAhhBCD9H8Ijp3p0+RgSAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcAAAAGyCAYAAABzzxS5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACAQklEQVR4nO3dd1wT5x8H8E8YYQ8RmSJDceDAVVScKIp1761o1dY9qHvhtq3VatVq3aNa1NZVBw4U66oLwYGCLBMVUETZM3l+f/DjNDJMIOGAfN+vV14mN3LfnJAPd/fc8wgYYwyEEEKImtHguwBCCCGEDxSAhBBC1BIFICGEELVEAUgIIUQtUQASQghRSxSAhBBC1BIFICGEELVEAUgIIUQtUQASQghRS1p8F1DWpFIpXr9+DSMjIwgEAr7LIYQQoiDGGFJSUmBjYwMNjVIcxzEeXb16lfXo0YNZW1szAOz48eNfXOfKlSusSZMmTCgUspo1a7I9e/YotE2xWMwA0IMe9KAHPSr4QywWlyx8/o/XI8C0tDS4urrim2++Qb9+/b64fHR0NLp3744JEybg4MGDCAgIwLhx42BtbQ0vLy+5tmlkZAQAEIvFMDY2LlX9hBBCyl5ycjLs7Oy47/OSEjBWPjrDFggEOH78OPr06VPkMnPnzsWZM2fw+PFjbtqQIUPw4cMH+Pv7y7Wd5ORkmJiYICkpiQKQEELKobikTDx5nVRgeqPqpqhmpKO07/EKdQ3w1q1b8PT0lJnm5eWFGTNmFLlOVlYWsrKyuNfJycmqKo8QQkgJvEnOxKbLEUjOzIGUAf+EvObm5Sa/RcKZX1D162nYP70HOtWzVNp2K1QAxsXFwdJS9sNbWloiOTkZGRkZ0NPTK7DOmjVrsGzZsrIqkRBCSBES07LRa/N1vHyfIdfy9joZuHd0IbISXiP78m8wntdXqfVUqAAsifnz58PHx4d7nX/umBBCiOqkZ+di5ZmneJOcyU27HpGAzBxpkeu4WBujf7PqAAArzVRMG9EH6Qmv4eTkhMCAE7CzM1NqjRUqAK2srBAfHy8zLT4+HsbGxoUe/QGAjo4OdHR0yqI8QghRW5k5Elx6Go+UzFwAwKaA53idlFnosnUsjfDHuBYy04RaGjDR0+Ze//HHH4iKisoLv8BAlRy4VKgAbNWqFc6ePSsz7eLFi2jVqhVPFRFCiPpKy8rFnL8fIjE1G7ei3hW6TJMaphjc/GN4aQgEaF+nGqoZFX9gMmLECABA+/btVXbWjtcATE1NRUREBPc6OjoawcHBMDMzQ40aNTB//ny8evUK+/fvBwBMmDABmzdvxpw5c/DNN9/g8uXLOHLkCM6cOcPXRyCEELWTnp2LdRfCset6dKHzPf/fUMXMQBtzu9ZFVUP5zsKJxWLo6enB3NwcwMcQVBVeA/DevXvw8PDgXudfq/P29sbevXsRGxsLkUjEzXd0dMSZM2cwc+ZMbNy4EdWrV8fOnTvlvgeQEEJIySVl5OB9WjZ2XY/Ggf9ecNOtTXSxoFs96As10cbZHDpamgq/t1gsRocOHWBgYIDLly9zIahK5eY+wLJC9wESQojiIt6koNfmG0jPlshMPzWlNRpVNy3Ve+eHn7zX/NTyPkBCCCFlizGGmYeDcSL44715hjpa0BdqYt0g1zIPP2WiACSEEFKkUyGvZcJvw+DG6NPEVinvzWf4ARSAhBBCiuBzJBjHgl5xr89Oa4t61qXrfzMf3+EHUAASQgj5REa2BL//G4mYhDSZI79tI5rCxUZ57SZycnKQk5PDW/gBFICEEKL2GGO4G/Me/4a/xeYrEQXm31vkCXM5b2WQV37waWtr89Y7FwUgIYSosZiENHx34D7C4lMKzJvh6Qw3RzOlhZ9IJEJoaCi6du0KIC8E+UQBSAghaiQxLRu3o95B+v8b4HxPPUFCat6IOab62rAx0cO0Ts7wqm8JgUCgtO2KRCJ4eHhALBbj1KlTXAjyiQKQEEIquZiENKy/GI7MHAkuhMYXukxDWxOcmtJaqaGXLz/88hu81K9fX+nbKAkKQEIIqYRSMnNwMTQeosR0bLj0vMB8c0MhalYzBAAY62ljSQ+XMgk/vhq8FIYCkBBCKjiplOF9ejYAIFfK8PP5MBy9/7LAch3qVENnF0vYmxmgjbPquxorz+EHUAASQkiFliORwnnhuSLnf+VQBUa62hjRsgY61lXeaOpf8ubNm3IdfgAFICGEVChJ6TlIzsxBSmYulp56gjsxiQWWEWpqoKerDca2cVTqvXuKMDc3R/v27QGgXIYfQAFICCEVxokHrzDjcHCh8/SFmniy7OPIOKq4nqcIDQ0N7Ny5EwkJCbCwsOC1lqJo8F0AIYSQL3v48oNM+OkLNaGtKUDrWlWxd8xXCFrcGQKBgHvwQSwWY/bs2cjNzRsVXkNDo9yGH0BHgIQQUm5dDX+L//4/0vrWwEhu+uZhTdCjkQ1fZRXq0749AWDt2rU8V/RlFICEEFKOxCdn4mTwK2wNjMT79JwC8/s3rV6uw8/JyQnTpk3juyS5UAASQkg54P84Fv6P42Q6oM432t0BmhoCGOpoYVQrex6qK1p5GNWhpCgACSGkjGXlShD04gNyJFIAgETKMOGPIJllrIx1MbVTLfR0tYGxrjYfZX5RRQ4/gAKQEELK3Jqzz7D3Zkyh8ya0r4lvWjvAwli3bItSkEQiwddff11hww+gACSEkDKRlpWL1Wef4uBtETetloUhhJofG+O716yKeV/X5aM8hWlqamL9+vXw8fHBuXPnKlz4ARSAhBCicrFJGWi15rLMNIeq+jg7rS2EWhXrbjTGGHebRZcuXRASEgJNTU2eqyqZirXnCSGkgknNysXYvfdkph0a1wIXfdpXuPATi8Vo3749wsPDuWkVNfwAOgIkhBCVYIwh8m0aPNdf5abZmurh3zke0NTgt5eWkvi0wcu4ceNw9epV3nubKS0KQEIIUaKYhDRce/4Wi08+KTBvz5ivKnz4OTk54eDBgxU+/AAKQEIIUapJB4MQGpssM61bQytsGtq0UoRfRWztWRQKQEIIUZKLofFc+LlYG6OHqzUmtKsJjQoYfEDlDj+AApAQQkrl9YcMfEjPwXS/B3j+JhUAUL2KHs5Ma1PhTxN+//33lTb8AApAQgj5olcfMvD3/ZfIzpXKTD/zKBbRCWky00z0tPHzQNcKH34A8PvvvwMA1q1bV+nCD6AAJISQIkmkDItOPMKfd8RfXNZUXxv1rIyx95uvoKNVcW8NSEtLg4GBAQCgSpUqOHLkCM8VqQ4FICGEFGH12acy4VfLwhBtapnLLKMv1IS3uwMsy3nXZfIQiUTw8PDAtGnTMH36dL7LUTkBY4zxXURZSk5OhomJCZKSkmBsbMx3OYQQnkW+TUVcUib3+kN6Dr4/GgwDoRbepWUDADQEwOmpbeFiU3m/M/LDLyoqCjVr1kRISAh3JFjeKOt7nI4ACSFq61lcMrpuuFbovMycvPCrZqSD63M9KvRpzS/5NPycnJxw5cqVcht+ykQBSAhRO3FJmQh5+QEz/IK5aXWtjLjnuVKGLi6W6NPEFramemoVfpWxtWdRKAAJIWqDMYbkjFy0XBMgM93R3AD+M9rxVBV/1Dn8AApAQkgl9j4tG/8+fwspY4hLysKP/s9k5te1MoKpvjZ+HdqEpwr5dfr0abUNP4ACkBBSiWTlSiB6l451F8KRmStBYNjbIpft4mKJ7aOal2F15c+kSZMAAD179lS78AMoAAkhlcST10kYtO0W0rIlBeYZ6mihSQ1TAEC/prboVM8SxrraZVxh+fDy5UuYmJjAyCjvmmd+CKojCkBCSIX0IT0b3x8JQUpmLgDgTkyizPy2zubo5WoDaxM9tK5VtVL0zFJa+df8rKys4O/vz4WguqIAJIRUGPHJmTj9MBZBL97jzKPYQpcZ1Lw6VvdtCC3NijXYrKp92uAFAJKSkigA+S6AEELk8ecdEeYfe1RgurOFIXw61wYAaGtqoHUtcwq/zxTW2rN69ep8l8U7CkBCSLmXK5HKhJ+NiS7a16kGb3cH1LWqvL2zKIO63+pQHApAQki5kZiWjZfv08EYsPDEI6T+//reu9Rsbpn1g1zRrykdvciDwq94FICEkHIh4k0KPNf/W+R8HS0NTPaohb5NbMuwqootOTkZycnJFH5FoAAkhPAqPTsXIeIkLDrx8RSnrakeGGOwNtXD/K/rAsjrraWqoQ5fZVZIDRo0wJUrV2BiYkLhVwgKQEIIr77Zexf/RX28haF1rao4OK4ljxVVbGKxGC9evECbNm0A5IUgKRw1lSKE8ObMw1iZ8GtSwxSLurvwWFHFJhaL0aFDB3h5eeH69et8l1Pu0REgIYQ3kw8Fcc8fLO6MKgZCHqup2PLDL7/Bi729Pd8llXt0BEgI4cW6C2Hc80Xd61H4lcLn4UcNXuRDR4CEkDKRnStFjkSKuzGJ+OO/F7j09A03b0RLOlopKQq/kqMAJISonP/jWEz4I6jQeScnt4auduUdcFaV4uLiKPxKgQKQEKIyyZk5SM3MLTT8vmvvhLa1qqFRdRMeKqsczMzM4OrqCgAUfiVAAUgIUYnLz+Ixfv99SKSMm3bku1ZoVN0EWhoC6q9TCYRCIfz8/JCYmAgrKyu+y6lwSvQTKBKJcO3aNZw/fx5BQUHIyspSdl2EkArsTUomvtl7jws/faEmto9sBjdHM+hqa1L4lYJYLMby5cvBWN6+FQqFFH4lJPcRYExMDLZu3Qo/Pz+8fPmS2/lA3n9A27Zt8e2336J///7Q0KAfbkLUlVTK0HXDNe713K51MbFDTR4rqjw+bfACAEuWLOG5oopNrqSaNm0aXF1dER0djZUrVyI0NBRJSUnIzs5GXFwczp49izZt2mDJkiVo1KgR7t69q+q6CSHlVFxyJhLT8jqvntWlNr5t58RzRZXD5609x4wZw3dJFZ5cR4AGBgaIiopC1apVC8yzsLBAx44d0bFjR/j6+sLf3x9isRhfffWV0oslhJRvYXEp8NrwsUPrsW2coKlBI7GXFt3qoBpyBeCaNWvkfsOuXbuWuBhCSMV1LOglfI6EcK8HNqsOPSHd3lBaFH6qQ61ACSGlcvSeGMHiDzh4W8RNG9PaAb496/NYVeWQnZ0NT09PCj8VUVprladPn8LJic71E6JO/r7/ErP/eigTfst716fwUxKhUIgVK1agdu3aFH4qoLQjwOzsbLx48UJZb0cIKefikzPx/dG8U54aAmB6p9qwMNbBwGY0WrsyDRo0CH369IFQSH2lKpvcAejj41Ps/Ldv35a6GEJI+fcmJRN3ohMx5dADbtqh8S3R0qlgIzmiOJFIhPHjx2Pnzp3cER+Fn2rIHYAbN25E48aNYWxsXOj81NTUEhWwZcsWrF27FnFxcXB1dcWmTZvg5uZW5PIbNmzA1q1bIRKJYG5ujgEDBmDNmjXQ1dUt0fYJIV+WK5EiR8KQnp0Lt1UBMvPca1al8FMSkUgEDw8PREVFYdy4cTh//jzfJVVqcgdgrVq1MHPmTIwYMaLQ+cHBwWjWrJlCGz98+DB8fHywbds2tGjRAhs2bICXlxfCwsJgYWFRYPlDhw5h3rx52L17N9zd3REeHo7Ro0dDIBBg/fr1Cm2bECKf+y/eY+Su20jPlshMd6iqjxaOVfFD/4Y8VVa5fBp+Tk5O2LlzJ98lVXpyN4Jp3rw57t+/X+R8gUAg0zuMPNavX4/x48djzJgxcHFxwbZt26Cvr4/du3cXuvzNmzfRunVrDBs2DA4ODujSpQuGDh2KO3fuKLRdQoj8tgZGyISfhiBv/L7A2R74cUAjCAR0n19pfR5+1OClbMh9BLhu3bpi+/x0dXWFVCqVe8PZ2dm4f/8+5s+fz03T0NCAp6cnbt26Veg67u7u+OOPP3Dnzh24ubkhKioKZ8+exciRI4vcTlZWlkzdycnJctdIiLrLyJbgRsQ7AMC2EU3R1rkatDU1INSi7g6VhcKPP3IHoLI7W01ISIBEIoGlpaXMdEtLSzx79qzQdYYNG4aEhAS0adMGjDHk5uZiwoQJWLBgQZHbWbNmDZYtW6bU2gmp7BhjOHr/JVaeDkVGjgRaGgJ0cbGCBvXqonQTJ06k8ONJhfozLjAwEKtXr8Zvv/2GoKAgHDt2DGfOnMGKFSuKXGf+/PlISkriHmKxuAwrJqRi+v5oCOb89RDJmbkAAAdzAwo/Fdm5cye6d+9O4ccD3nqCMTc3h6amJuLj42Wmx8fHF3m0uXjxYowcORLjxo0DADRs2BBpaWn49ttvsXDhwkJHodDR0YGOjo7yPwAhlUSuRIqIt6mQSoHTD1/j3OM4RCekcfPnf10XA+jePqXKysrivpesra1x+vRpnitST7wFoFAoRLNmzRAQEIA+ffoAAKRSKQICAjBlypRC10lPTy8QcpqaeX0NKtoAhxACvEnOhNvqgELnCQTA1VkeqFFVv4yrqtzEYjE6deqERYsWYdSoUXyXo9Z47QvUx8cH3t7eaN68Odzc3LBhwwakpaVxw3yMGjUKtra2XGfcPXv2xPr169GkSRO0aNECERERWLx4MXr27MkFISGkeBIpw+NXSciRSDFgm2yDs2pGOsjIlmBNv4ZobGcKOzMKP2X6tGPrlStXYvDgwXSGike8BuDgwYPx9u1bLFmyBHFxcWjcuDH8/f25hjEikUjmiG/RokUQCARYtGgRXr16hWrVqqFnz55YtWoVXx+BkAolKSMHrssuFJhez9oYZ6e1oVsaVOjzUR0CAgIo/HgmYCU4d/jvv/9CX18fzZs356bdu3cP6enpaNeunVILVLbk5GSYmJggKSmpyF5tCKlMpFIGnyPBuBAaX+BmdkdzA9ia6uHAWDcKPxWiIY2US1nf4yU6AuzQoQPq1q2L0NBQbtrIkSMRHh4OiURSzJqEkLL2zb67CAyT7avXvqo+zs9oB11tunSgahR+5VeJAjA6Ohra2toy0wICApCTk6OUogghyvE8PkUm/E5Mbg1zQyGqV6Fre2Xl4MGDFH7lVIkC0N7evsA0GxubUhdDCFGOHIkUB269wPLTH8/S3FnQCRbG1Gl8WZs7dy4AYPjw4RR+5QyNCE9IJXPl2RusOBOKqLd59/JZm+hicQ8XCr8y9Pr1a5iZmUFXVxcCgQDz5s3juyRSCLkCsEqVKnJfIE9MTCxVQYSQkol4k4IVp5/ianjeKc+qBkJ836UOBn9lB03qxaXM5F/zq1OnDo4dO0ZDtZVjcgXghg0bVFwGIaSkPqRnY8Ol5zjw3wtIpAzamgKMae2IKR1rwVhX+8tvQJTm0wYvQN4BAV0eKr/kCkBvb29V10EIUVCORIpDt0X45VI4PqTnNUDr7GKJBd3qwdHcgOfq1E9hrT0p/Mq3El0DjIyMxJ49exAZGYmNGzfCwsIC586dQ40aNVC/fn1l10gI+czV8LdYcToUEW9SAQB1LI2wpKcLWtcy57ky9US3OlRMCo8GcfXqVTRs2BC3b9/GsWPHkJqa9wsYEhICX19fpRdICPko8m0qxuy5A+/ddxDxJhVmBkKs7NMAZ6a1ofDjCYVfxaXwEeC8efOwcuVK+Pj4wMjIiJvesWNHbN68WanFEULyJKXnYGPAc+y/FYNcKYOWhgCj3R0wtZMzTPToOh+fYmNj8fbtWwq/CkjhAHz06BEOHTpUYLqFhQUSEhKUUhQhJE+uRIo/74iw/mI43v//Ol+nuhZY2L0enKoZ8lwdAQA3NzdcunQJ1tbWFH4VjMIBaGpqitjYWDg6OspMf/DgAWxtbZVWGCHq7trzvOt84fF5lxmcLQyxuIcL2tWuxnNlRCwW4927d2jcuDGAvBAkFY/CAThkyBDMnTsXR48ehUAggFQqxY0bNzBr1iwa24oQJYh6m4rVZ5/i0tM3AABTfW34dK6NYW41oKWp8GV7omT51/zev3+Py5cvcyFIKh6FA3D16tWYPHky7OzsIJFI4OLiAolEgmHDhmHRokWqqJEQtZCUkYNNAc+x71YMciR51/lGtrLH9E7OMNUX8l0eQcEGL1WrVuW7JFIKJRoOCcgbq+/x48dITU1FkyZN4OzsrOzaVIKGQyLlTXJmDo7cFeO3wEgkpmUDADzqVMPC7i6oZUHX+coLau1ZfvA6HBIA1KhRg/vPp3HECCmZ4w9eYubhEO51zWoGWNzDBR3qWPBYFfkchV/lVKILCrt27UKDBg2gq6sLXV1dNGjQADt37lR2bYRUaruuR8uEX78mtvCf0Y7Cr5x59eoVhV8lpfAR4JIlS7B+/XpMnToVrVq1AgDcunULM2fOhEgkwvLly5VeJCGVzYt3aVjxyVBFvw1viq8bWNHZlHKoSpUq3BBwFH6Vi8LXAKtVq4Zff/0VQ4cOlZn+559/YurUqeX+XkC6Bkj49jYlC1+tusS93jvmKzrqK+fS09Px/v17utWrnFDW97jCp0BzcnLQvHnzAtObNWuG3NzcEhdCiLoIj0/hng91s0M7Z7qvr7wRiUTYsGED8o8P9PX1KfwqIYVPgY4cORJbt27F+vXrZaZv374dw4cPV1phhFQmEinDyeBXeJOShZiEvIFqa1kYYk2/RjxXRj4nEong4eHBDWk0Y8YMfgsiKiNXAPr4+HDPBQIBdu7ciQsXLqBly5YAgNu3b0MkEtGN8IQU4UZEAnyOhMhMMxBq8lQNKcqn4efk5IT+/fvzXRJRIbkC8MGDBzKvmzVrBiBvWCQAMDc3h7m5OZ48eaLk8gipHJIy8vrxrGakg/a1q0FDAAxoRo0pypPPw48avFR+cgXglStXVF0HIZXWw5cfMPXPvD8ia1UzxM8DXXmuiHyOwk89UceChKhYr803uOcONFJ7uZORkYGOHTtS+KmhEvUEc+/ePRw5cgQikQjZ2dky844dO6aUwgip6HZfj8a2q5Hc656uNljZpwGPFZHC6OnpYfbs2fj5559x+fJlCj81ovARoJ+fH9zd3fH06VMcP34cOTk5ePLkCS5fvgwTExNV1EhIhSOVMmz/NwpvUrIAAHramljWqz40NehG9/Lou+++w8OHDyn81IzCAbh69Wr88ssv+OeffyAUCrFx40Y8e/YMgwYNQo0aNVRRIyEVTsTbVMQlZwIA/hzfEv/N7wQzAxrRobwQi8Xo27evTMcdenp6PFZE+KBwAEZGRqJ79+4AAKFQiLS0NAgEAsycORPbt29XeoGEVETZuVIAgJWxLlrVrAoTfW2eKyL58ju2PnHiBMaPH893OYRHCgdglSpVkJKS15OFra0tHj9+DAD48OED0tPTlVsdIRVUQmreqU8dbWpnVp58PqrDr7/+yndJhEcKN4Jp164dLl68iIYNG2LgwIGYPn06Ll++jIsXL6JTp06qqJGQCudW1DsAQAtHM54rIfloSCPyOYUDcPPmzcjMzLu2sXDhQmhra+PmzZvo378/jQhPCICbEQn4/WpeN1pWxro8V0MACj9SOIUD0Mzs41+0GhoamDdvnlILIqQiOvcoFvtvvUBiWjbCPuns2s2xKo9VkXze3t4UfqQAuQIwOTlZ7jekIYaIOvotMBKPXiVxrw2EmvhtRDO0cTbnsSqSb+fOnRg3bhz27dtH4Uc4cgWgqanpFwfqZIxBIBBAIpEopTBCKpL8vj6neNSCq50p2jqbQ1ebOrvmU25uLrS08r7inJyccPnyZZ4rIuUN9QVKSCldCo2HKDGvBXQLJzO0pfH9eCcWi9GlSxf8+OOP6NWrF9/lkHJKrgBs3769qusgpEJ5n5YN8ft0zD/2CE9ef7xE0Ki6KX9FEQCyDV7mzp2Lbt26cUeChHyKfioIUdC71Cx0+eVfvEuT7Qd3z5ivYKJHN7zz6fPWnhcuXKDwI0WinwxCFJCcmYOZR0K48LMy1kX1KnrYNrIZzA11eK5OvdGtDkRRFICEKKDvlhuIfJsGAFjTryGGulH/t+UBhR8pCeqniRAFiBMzAAC1LAzRvZE1z9WQfNu2baPwIwor0RFgbm4uAgMDERkZiWHDhsHIyAivX7+GsbExDA0NlV0jIeXOgbFuMNal633lxYoVKwAAEyZMoPAjclM4AF+8eIGuXbtCJBIhKysLnTt3hpGREX788UdkZWVh27ZtqqiTEN6dfxKHbImU7zLI/8XHx6Nq1arQ0tKChoYGVq1axXdJpIJR+BTo9OnT0bx5c7x//15m/Ky+ffsiICBAqcURUh5k5UrgczgY3x24z02jBi/8EovFcHd3x6hRo5Cbm8t3OaSCUvgI8Nq1a7h58yaEQtnBPR0cHPDq1SulFUZIeXHg1gsce/DxZ3v/N27Q1qTL53z5tMELALx79w6WlpY8V0UqIoUDUCqVFtrd2cuXL2FkZKSUogjhW45Eig/pOYh6m4qVZ55y06/M6gBHcwMeK1NvhbX2pPAjJaVwAHbp0gUbNmzgRn8XCARITU2Fr68vunXrpvQCCSlr79Oy0WTFxQLT9475isKPR3SrA1E2AWOMKbLCy5cv4eXlBcYYnj9/jubNm+P58+cwNzfHv//+CwsLC1XVqhTJyckwMTFBUlISjVxBClV/iT/SsvPOcggEgJGOFraNbAb3mjSyA18o/MinlPU9rvARYPXq1RESEgI/Pz88fPgQqampGDt2LIYPHy7TKIaQiujJ6yQu/JrbV8FfE915rogAwPPnz/Hq1SsKP6JUCh8BZmZmQle34o5yTUeApCgJqVlovvISAMDF2hj/TG0DTY3ihwEjZefy5ctwdnam8CNK+x5XuCmbhYUFvL29cfHiRUildE8UqRzepnwMPwCY7ulM4cczkUiE8PBw7nXHjh0p/IhSKRyA+/btQ3p6Onr37g1bW1vMmDED9+7dU0VthJSZbw98/Bme1aU2urhQy0I+iUQieHh4oEOHDjIhSIgyKRyAffv2xdGjRxEfH4/Vq1cjNDQULVu2RO3atbF8+XJV1EiIyj0QfQAAuFY3wZSOzhAI6OiPL/nhFxUVBT09PWpbQFSmxHfzGhkZYcyYMbhw4QIePnwIAwMDLFu2TJm1EVImwuNTuOe7R3/FYyXk0/CjBi9E1UocgJmZmThy5Aj69OmDpk2bIjExEbNnz1ZmbYSUif23YgAAje1MUZW6OOMNhR8pawrfBnH+/HkcOnQIJ06cgJaWFgYMGIALFy6gXbt2qqiPEJXKkUjxx38ivstQey9fvqTwI2VO4QDs27cvevTogf3796Nbt27Q1qYhYUjFtflyBPd8bte6PFai3gwMDGBmZgYAFH6kzCgcgPHx8dTnJ6kUNlwKx8aA59zrVjWr8liNeqtSpQouXLiAtLQ0VK9ene9yiJqQ6xpgcnIy95wxhuTk5CIfhFQEJx68woZLH8PvzLQ2PFajnsRiMXbv3s29rlKlCoUfKVNyHQFWqVIFsbGxsLCwgKmpaaFNxBljEAgEhY4UQUh5s/nKx1OfEau+hhYNb1SmPh/S6JtvvuG5IqKO5ArAy5cvc+fnr1y5otKCCFG1HIkUEW9SAQA/9m9I4VfGPu/YunPnznyXRNSUXAHYvn177rmjoyPs7OwKHAUyxiAWi5VbHSEq0H/rTe55C0e67leWaFQHUp4o/Kevo6Mj3r59W2B6YmIiHB0dFS5gy5YtcHBwgK6uLlq0aIE7d+4Uu/yHDx8wefJkWFtbQ0dHB7Vr18bZs2cV3i5RXw9fJnHPHWh8vzJD4UfKG4VbgeZf6/tcamqqwqNEHD58GD4+Pti2bRtatGiBDRs2wMvLC2FhYYWOK5idnY3OnTvDwsICf/31F2xtbfHixQuYmpoq+jGImlr+Tyj3/OJMune1rKSkpFD4kXJH7gD08fEBkDcC/OLFi6Gvr8/Nk0gkuH37Nho3bqzQxtevX4/x48djzJgxAIBt27bhzJkz2L17N+bNm1dg+d27dyMxMRE3b97k7j90cHBQaJtEfcUnZ2L3jWjudS0LQx6rUS9GRkYYO3Ysdu3aReFHyg25A/DBgwcA8o4AHz16BKFQyM0TCoVwdXXFrFmz5N5wdnY27t+/j/nz53PTNDQ04OnpiVu3bhW6zqlTp9CqVStMnjwZJ0+eRLVq1TBs2DDMnTsXmpqaha6TlZWFrKws7jXdqqG+0rJyueeXv29PHV6XsQULFmDq1Kl0HzEpN+QOwPzWn2PGjMHGjRtLPZhsQkICJBIJLC1lh52xtLTEs2fPCl0nKioKly9fxvDhw3H27FlERERg0qRJyMnJga+vb6HrrFmzhjrpJgAA6f+HfjbS1YJTNTr6UzWxWIz58+dj69atXOhR+JHyROFrgHv27FFFHXKRSqWwsLDA9u3boampiWbNmuHVq1dYu3ZtkQE4f/587vQtkHcESKdf1M+zuGR03XANAJArYTxXU/l9fp/fH3/8wXNFhBQkVwD269cPe/fuhbGxMfr161fssseOHZNrw+bm5tDU1ER8fLzM9Pj4eFhZWRW6jrW1NbS1tWVOd9arVw9xcXHIzs6WOS2bT0dHBzo61MO/OnvyOgndf73OvTbVp/5rVenz1p5r1qzhuyRCCiXXbRAmJibc9RITE5NiH/ISCoVo1qwZAgICuGlSqRQBAQFo1apVoeu0bt0aERERkEql3LTw8HBYW1sXGn6EiN6ly4Rfv6a2OE+tP1WGbnUgFQrjkZ+fH9PR0WF79+5loaGh7Ntvv2WmpqYsLi6OMcbYyJEj2bx587jlRSIRMzIyYlOmTGFhYWHs9OnTzMLCgq1cuVLubSYlJTEALCkpSemfh5Q/8/4OYfZzTzP7uafZj+ee8l1OpSYSiZiTkxMDwJycnJhIJOK7JFJJKet7XOFrgBkZGWCMcbdBvHjxAsePH4eLiwu6dOmi0HsNHjwYb9++xZIlSxAXF4fGjRvD39+faxgjEomgofHxINXOzg7nz5/HzJkz0ahRI9ja2mL69OmYO3euoh+DVHKMMSz7JxR/3snrnWhSh5qYQ8MdqQxjDIMGDaIjP1KhCBhjCrUI6NKlC/r164cJEybgw4cPqFOnDoRCIRISErB+/XpMnDhRVbUqRXJyMkxMTJCUlFTqlqyk/Np7IxpLP7np/cqsDnCkXl9U6vHjxxg/fjyOHDlC4UdUSlnf4wp3hRYUFIS2bdsCAP766y9YWVnhxYsX2L9/P3799dcSF0KIMr36kME995/RlsJPRT69Ht+gQQPcvHmTwo9UGAoHYHp6Oncvz4ULF9CvXz9oaGigZcuWePHihdILJEQRGdkS7LsZgx3X8np8GdfGEXWt6EhfFcRiMZo0aYKrV69y06hzAVKRKByAtWrVwokTJyAWi3H+/Hnuut+bN2/olCLhVVauBJ3WBcL31BNuWm1LuvFaFfJbez58+BDTpk2TORIkpKJQOACXLFmCWbNmwcHBAW5ubtwtCxcuXECTJk2UXiAh8nr8KgmvkzIBAK2cqmJxDxcM+opOxynb57c6nD59WqaxGiEVhcKtQAcMGIA2bdogNjYWrq6u3PROnTqhb9++Si2OEEUkZeQAAAQC4M9vW/JcTeVE9/mRykThAAQAKysrWFlZ4eXLlwCA6tWrw83NTamFEaKomxHvAACDmtEXsipQ+JHKRuHzFlKpFMuXL4eJiQns7e1hb28PU1NTrFixgq4DEF7lHwHSILeqsXbtWgo/UqkofAS4cOFC7Nq1Cz/88ANat24NALh+/TqWLl2KzMxMrFq1SulFEkL49/PPPwMAZs+eTeFHKgWFA3Dfvn3YuXMnevXqxU3L75Vl0qRJFICkzCSl5+BOTCIYY3gWl4Kj91/yXVKlk5CQgKpVq0IgEEAoFNK9vqRSUTgAExMTUbduwS6l6tati8TERKUURUhxGGM4fFeMecceFTq/vg3djqMMIpEIHh4e8PLywpYtW+geP1LpKHwN0NXVFZs3by4wffPmzTKtQglRhcwcCTr/8q9M+Jnqa6NpDVO0q10Nl79vj3a1q/FYYeWQH35RUVE4f/483r17x3dJhCidwkeAP/30E7p3745Lly5x9wDeunULYrEYZ8+eVXqBhAB5PbzkSKWIfJOKiDep3PQ9o7+CR10LHiurfD4Nv/wGL+bm5nyXRYjSKRyA7du3R3h4OH777Tc8ffoUQN6AuZMmTYKNjY3SCyTk8F0R5h97BOkn3bYLBEDEqm7Q1KDTcspUWPhRgxdSWSkUgDExMbh48SKys7MxZMgQNGjQQFV1EQIgr1PruX8XvNbXt4kthZ+SUfgRdSN3AF65cgU9evRARkZeL/taWlrYvXs3RowYobLiiPqKT87EkbtirLsYzk1bO6ARejXOO8ugo6XJV2mVVnBwMF68eEHhR9SG3OMBtmnTBubm5ti6dSt0dXWxaNEiHD9+HK9fv1Z1jUpF4wGWf1FvU9Fx3VWZaf2a2GLtQFc66lOxU6dOoUmTJhR+pFxT1ve43AFoamqKmzdvwsXFBUDesEjGxsaIj49H1apVS1xAWaMALP+mHArC6YexAABbUz0s710fnepZ8lxV5SQWiwGAAo9UKMr6Hpf7FGhycrJMSzB9fX3o6ekhKSmpQgUgKb9yJVLsvB7NhV9dKyP4z2jHc1WVV37fngDolCdRSwo1gjl//jxMTEy411KpFAEBAXj8+DE37dMeYghRxKyjITgR/PGU+pp+DXmspnL7vGNrQtSR3KdA5RnvSyAQQCKRlLooVaJToOXTf1HvMGT7f9zrQ+NawL0W3XumCjSqA6noyvwUKI30QFTp/JM47vmVWR3gSCM6qASFHyEf0TDOhHeMMTx+lQQAGPKVHYWfilD4ESJLrgD877//vrzQ/6Wnp+PJkyclLoionyDRB9yNeQ8AsDDS4bmayktLSwtCoZDCj5D/kysAR44cCS8vLxw9ehRpaWmFLhMaGooFCxagZs2auH//vlKLJJXbsaCPwxjl3+hOlM/a2hqXL1+m8CPk/+S6BhgaGoqtW7di0aJFGDZsGGrXrg0bGxvo6uri/fv3ePbsGVJTU9G3b19cuHABDRtS6z0in9SsXBy8LQIA/DG2BWpZGPFcUeUiFovx33//YeDAgQDyQpAQkkeuANTW1sa0adMwbdo03Lt3D9evX8eLFy+QkZEBV1dXzJw5Ex4eHjAzM1N1vaSS+ete3o3YWhoCtHGmVp/KlH/NLzo6GgC4ECSE5FF4NIjmzZujefPmqqiFqJnUrFxsCHgOAKhtSUd+yvR5g5eWLVvyXRIh5Y7CAUiIMgSJ3mPgtluQ/H+Mox3e9EeVslBrT0LkQ7dBEF4EPI3nwm/tgEawNdXjuaLKgcKPEPnRESApc/OPPcKfd/IavnzdwAoDm9MXtDK8f/+ewo8QBdARICkzIeIPaPvTZS78AODrhtQqUVlMTU3Rr18/Cj9C5CR3X6CFyczMhK6urjLrUTnqC5QfuRIpai08JzPt39keqFFVn6eKKifGGD58+IAqVarwXQohKqOs73GFjwClUilWrFgBW1tbGBoaIioqCgCwePFi7Nq1q8SFkMotWPyBez69kzPuLOxE4acEYrEYEyZMQGZmJoC8Dukp/AiRj8IBuHLlSuzduxc//fQThEIhN71BgwbYuXOnUosjlUdmTl5n6nUsjTCzc21YGFWsMwflUX6Dl99//x0zZszguxxCKhyFA3D//v3Yvn07hg8fDk1NTW66q6srnj17ptTiSOWQlpWL3wIjAAB6Qs0vLE3k8Xlrz4ULF/JdEiEVjsKtQF+9eoVatWoVmC6VSpGTk6OUokjlIU5MR9ufrnCvO9a14LGayoFudSBEORQ+AnRxccG1a9cKTP/rr7/QpEkTpRRFKo8D/73gnpvqa6N/s+o8VlPxUfgRojwKHwEuWbIE3t7eePXqFaRSKY4dO4awsDDs378fp0+fVkWNpIJhjCErN++a34FbeQFYy8IQF2e2g0Ag4LO0Ck0qlaJ3794UfoQoicIB2Lt3b/zzzz9Yvnw5DAwMsGTJEjRt2hT//PMPOnfurIoaSQVyJzoRg36/VWB6j0bWFH6lpKGhgd9++w2TJk3CyZMnKfwIKaVS3QdYEdF9gKrz6kMGWv9wudB5j5d5wVCHOh4qCcaYzB8PUqkUGhrUhwVRX7zdB+jk5IR3794VmP7hwwc4OTmVuBBS8b1Py+aef9+5Np4s88KTZV6IWt2Nwq+ERCIR3NzcEBQUxE2j8CNEORT+TYqJiYFEIikwPSsrC69evVJKUaRieiB6DwCwMtbF1E7OMNDRgoGOFjQ06NRnSYhEInh4eODevXv47rvvoGYnawhRObn/LD916hT3/Pz58zAxMeFeSyQSBAQEwMHBQanFkYojM0eCxSefAADikjN5rqbiyw+//AYvx44do2uohCiZ3AHYp08fAHldLXl7e8vM09bWhoODA9atW6fU4kjF8W/4W+75ntFf8VhJxfd5+FFrT0JUQ+4AlErzmrU7Ojri7t27MDc3V1lRpOJ5/SEDANC6VlV40M3uJUbhR0jZUbhlQnR0tCrqIBXc8eDXAIAGtiZfWJIUZ+nSpRR+hJSREjXNS0tLw9WrVyESiZCdnS0zb9q0aUopjFQc6dm5CPn/aA/1bSgAS2Pz5s0AgGXLllH4EaJiCgfggwcP0K1bN6SnpyMtLQ1mZmZISEiAvr4+LCwsKADV0OVnb7jn7jWr8lhJxZR/L5NAIIC+vj52797Nd0mEqAWFb4OYOXMmevbsiffv30NPTw///fcfXrx4gWbNmuHnn39WRY2knAuLS+Gemxvq8FhJxSMWi9G0aVMsWbKEbnMgpIwpHIDBwcH4/vvvoaGhAU1NTWRlZcHOzg4//fQTFixYoIoaSTmWmpWLi6HxAIChbjV4rqZi+bRj60OHDiE5OZnvkghRKwqfAtXW1uZ6orCwsIBIJEK9evVgYmICsVis9AJJ+fNv+FscviuGRMpw8Wk8JNK8IxddbeqhRF6Fjerw6b21hBDVUzgAmzRpgrt378LZ2Rnt27fHkiVLkJCQgAMHDqBBgwaqqJGUI0fuijHn74cFprs5mGFgM2q0IQ8a0oiQ8kHhAFy9ejVSUvKu+axatQqjRo3CxIkT4ezsjF27dim9QFK+fBp+y3rVh6aGAA1sTdDYzpS/oioQCj9Cyg+FA7B58+bccwsLC/j7+yu1IFK+WRrrID45CxuHNEbvxrZ8l1PhXL16lcKPkHJCaRdtgoKC0KNHD2W9HSmHpFKGtylZAIDalkY8V1MxjRgxAgcOHKDwI6QcUCgAz58/j1mzZmHBggWIiooCADx79gx9+vTBV199xXWXRiqfzBwJmq68CCkDDISaqFnNkO+SKgyxWIyEhATu9YgRIyj8CCkH5A7AXbt24euvv8bevXvx448/omXLlvjjjz/QqlUrWFlZ4fHjxzh79qwqayU8Ov0wFh/ScwAA1avoQ6hFLT7lkX/Nr2PHjjIhSAjhn9zfYhs3bsSPP/6IhIQEHDlyBAkJCfjtt9/w6NEjbNu2DfXq1VNlnYRnSRk53POjE1vxWEnF8WmDl7S0NGRkZPBdEiHkE3IHYGRkJAYOHAgA6NevH7S0tLB27VpUr15dZcWR8iFHIsWGi+EAgF6uNjDW1ea5ovKPWnsSUv7JHYAZGRnQ19cHkDcmoI6ODqytrVVWGCk/tv8bhZSsXACAo7kBz9WUfxR+hFQMCt0GsXPnThga5jV+yM3Nxd69ewuMC0idYVcuv1wMx8aA5wCAPo1tMMPTmeeKyjcKP0IqDgGTswdeBwcHCASC4t9MIOBahypiy5YtWLt2LeLi4uDq6opNmzbBzc3ti+v5+flh6NCh6N27N06cOCHXtpKTk2FiYsL1wE+KlpKZg4ZLLwAANARAsG8XOv35BdHR0ejQoQO0tLQo/AhREWV9j8t9BBgTE1PijRTn8OHD8PHxwbZt29CiRQts2LABXl5eCAsLg4VF0SOLx8TEYNasWWjbtq1K6iLA+7SPDV/uL+pM4ScHR0dHBAYGQktLi8KPkHKO97bs69evx/jx4zFmzBi4uLhg27ZtXxwTTSKRYPjw4Vi2bBmcnJzKsFr14v8kFgCgL9REFQMhz9WUX2KxWKZHJEdHRwo/QioAXgMwOzsb9+/fh6enJzdNQ0MDnp6euHXrVpHrLV++HBYWFhg7duwXt5GVlYXk5GSZB5HP6rPPAAC5Uhqnrij51/x69epF3QISUsHwGoAJCQmQSCSwtLSUmW5paYm4uLhC17l+/Tp27dqFHTt2yLWNNWvWwMTEhHvQX+byuRn58abtX4c05q+QcuzTBi92dnaoX78+3yURQhTA+ylQRaSkpGDkyJHYsWNHgdanRZk/fz6SkpK4B41ZKJ+TD14DAPS0NeFV34rnasofau1JSMWn8GgQymRubg5NTU3Ex8fLTI+Pj4eVVcEv3cjISMTExKBnz57ctPz+R7W0tBAWFoaaNWvKrKOjowMdHR0VVF95RbxJweF7eX8o7Bnz1Rdb/6obCj9CKocSHQFGRkZi0aJFGDp0KN68eQMAOHfuHJ48eaLQ+wiFQjRr1gwBAQHcNKlUioCAALRqVbC7rbp16+LRo0cIDg7mHr169YKHhweCg4PpS0hJPNf/CyBvkNuWTlV5rqZ8efv2LYUfIZWEwgF49epVNGzYELdv38axY8eQmpoKAAgJCYGvr6/CBfj4+GDHjh3Yt28fnj59iokTJyItLQ1jxowBAIwaNQrz588HAOjq6qJBgwYyD1NTUxgZGaFBgwYQCqmlYmlFvEnhnjeuYcpfIeVU1apV0b59ewo/QioBhU+Bzps3DytXroSPjw+MjD6OCdexY0ds3rxZ4QIGDx6Mt2/fYsmSJYiLi0Pjxo3h7+/PNYwRiUTQ0KhQlyorNL87H6+Rzu1al8dKyicNDQ3s3LkT7969Q7Vq1fguhxBSCnL3BJPP0NAQjx49gqOjI4yMjBASEgInJyfExMSgbt26yMzMVFWtSkE9wRTtxINXmHE4GACwbUQzdG1AjV+AvGt+v/76K9asWQMtLV4vmxNCwENPMPlMTU0RGxsLR0dHmekPHjyAra1tiQsh/Lod9Y4LPwDoUIeObgDZBi8AsHbtWp4rIoQoi8IBOGTIEMydOxdHjx6FQCCAVCrFjRs3MGvWLIwaNUoVNRIV2v5vJHZei8ablCxu2obBjaGrrcljVeXD5609qaN3QioXhS+urV69GnXr1oWdnR1SU1Ph4uKCdu3awd3dHYsWLVJFjURFGGNYffaZTPh937k2ujeiYa7oVgdCKj+FrwHmE4lEePz4MVJTU9GkSRM4O1eMYXLoGmAexhj233oB31N5t66sH+SKTvUsYaJHHV5T+BFSvvF2DfD69eto06YNatSogRo1apR4w4RfNyLeceEHAH2b2NIN78jraP3rr7+m8CNEDSh8CrRjx45wdHTEggULEBoaqoqaSBl4nZTBPb8wsx2F3/9pampi/fr1qF+/PoUfIZWcwgH4+vVrfP/997h69SoaNGiAxo0bY+3atXj58qUq6iMq8iw274b3Qc2ro7al0ReWrvw+vRLQpUsXhISEUPgRUskpHIDm5uaYMmUKbty4gcjISAwcOBD79u2Dg4MDOnbsqIoaiZJFvEnB7hvRAEBdnSHvml+7du0QFhbGTdPUpFawhFR2pepixdHREfPmzcMPP/yAhg0b4urVq8qqiyiZRMoQn5yJOX+FcH19AlD7Ud7zG7xcv34d48aNQwnbhBFCKqASd2tx48YNHDx4EH/99RcyMzPRu3dvrFmzRpm1ESUauO0mgkQfZKaNamWP1rXkG1aqMvq8teehQ4foWighakThAJw/fz78/Pzw+vVrdO7cGRs3bkTv3r2hr6+vivqIEojepcuEn662Bm7M7Yiqhuo7TBTd6kAIUTgA//33X8yePRuDBg2Se1Bawo/XHzJw6LYIm69EcNOereiq9r28UPgRQoASBOCNGzdUUQdRAfcfLsu8nu1VR+3DDwC+//57Cj9CiHwBeOrUKXz99dfQ1tbGqVOnil22V69eSimMlM6H9GzuuZO5AXx71Uf72tTBNQD8/vvvAIB169ZR+BGixuTqCk1DQwNxcXGwsLAodmw+gUAAiUSi1AKVTV26Qvsv6h2GbP8PABC1uhs0NNS7cUdaWhoMDAz4LoMQogTK+h6X6zYIqVQKCwsL7nlRj/IefurkwSeNXtS9YaNYLIarqys2bNjAdymEkHJE4fsA9+/fj6ysrALTs7OzsX//fqUURUpv/60YAED3htZq3bQ/v8FLZGQkNm/ejLS0NL5LIoSUEwoH4JgxY5CUlFRgekpKCsaMGaOUokjp6f2/sYu+UH0bvXze2vPKlSt0GpQQwlE4ABljhR5RvHz5EiYmJkopipROSmYOohLyjnQGNlfPRh50qwMh5Evkvg2iSZMmEAgEEAgE6NSpE7S0Pq4qkUgQHR2Nrl27qqRIopiwuBTuec1q6nfEQ+FHCJGH3AHYp08fAEBwcDC8vLxgaGjIzRMKhXBwcED//v2VXiBRzP0X77H/1gsAgK2pnlr29nLmzBkKP0LIF8kdgL6+vgAABwcHDB48GLq6uioripRMQmoWBm67Cen/b2ypb1N5b/MozoQJEwAA3bt3p/AjhBRJ4Z5gvL29VVEHUYL3adlc+PVytcGcrnX4LagM5V+DNjLKG9swPwQJIaQocgWgmZkZwsPDYW5ujipVqhTbrD4xMVFpxRH5ZeZIcPphLADAxdoYvw5twnNFZSf/mp+VlRX8/f25ECSEkOLIFYC//PIL96Xyyy+/qPV9ZeVRjkQKz/VX8fJ9BgDAzdGM54rKzqcNXgAgKSmJApAQIhe5AvDT056jR49WVS2khIJevOfCz8JIB171rXiuqGwU1tqzevXqfJdFCKkgFL4PMCgoCI8ePeJenzx5En369MGCBQuQnZ1dzJpEVfb/l9fqs0Odariz0BOtalbluSLVo1sdCCGlpXAAfvfddwgPDwcAREVFYfDgwdDX18fRo0cxZ84cpRdIvuz68wQAgKGOwm2aKiQKP0KIMigcgOHh4WjcuDEA4OjRo2jfvj0OHTqEvXv34u+//1Z2feQLciVSJGXkAIDanPpMTk5GSkoKhR8hpFQUPmRgjEEqlQIALl26hB49egAA7OzskJCQoNzqSLEYY1h88jH3uralejT+qF+/Pq5cuQJjY2MKP0JIiSl8BNi8eXOsXLkSBw4cwNWrV9G9e3cAQHR0NCwtLZVeICnatecJ+POOGADQ0skMtS0Nv7BGxSUWi3H9+nXudf369Sn8CCGlonAAbtiwAUFBQZgyZQoWLlyIWrVqAQD++usvuLu7K71AUrSzj2K55z/1d620t6fkX/Pz8vKSCUFCCCkNhU+BNmrUSKYVaL61a9dCU1N9h94pa6J36fC7m3f0t26gK2pU1ee5ItX4vMGLvb093yURQiqJEjcbvH//Pp4+fQoAcHFxQdOmTZVWFPkyv7si7rmDeeUc8YFaexJCVEnhAHzz5g0GDx6Mq1evwtTUFADw4cMHeHh4wM/PD9WqVVN2jaQQOZK8hki1LQ3RtIYpv8WoAIUfIUTVFL4GOHXqVKSmpuLJkydITExEYmIiHj9+jOTkZEybNk0VNZJieNS1qHTX/uLi4ij8CCEqp/ARoL+/Py5duoR69epx01xcXLBlyxZ06dJFqcWRosUnZ/FdgsqYmZnB1dUVACj8CCEqo3AASqVSaGtrF5iura3N3R9IVOuXi+E4FfKa7zJURigUws/PD4mJibCyUo+b+wkhZU/hU6AdO3bE9OnT8fr1xy/gV69eYebMmejUqZNSiyOF2xjwnHveobYFj5Uoj1gsxrJly7g/ooRCIYUfIUSlFD4C3Lx5M3r16gUHBwfu1JRYLEaDBg3wxx9/KL1AIkv0Lp17fmh8i0rR8fXnQxr5+vryXBEhRB0oHIB2dnYICgpCQEAAdxtEvXr14OnpqfTiSEFnH3+8+d29pjmPlSjH5609v/nmG75LIoSoCYUC8PDhwzh16hSys7PRqVMnTJ06VVV1kSLciU4EAFga6/BcSenRrQ6EED7JHYBbt27F5MmT4ezsDD09PRw7dgyRkZFYu3atKusj/7fvZgw2XX6OhNS8MRfdHCv2qU8KP0II3+RuBLN582b4+voiLCwMwcHB2LdvH3777TdV1kY+cfzBKy78AGBi+5o8VlM62dnZ8PT0pPAjhPBK7gCMioqCt7c393rYsGHIzc1FbGxsMWsRZVvRuz5CfLvAxcaY71JKTCgUYsWKFahduzaFHyGEN3IHYFZWFgwMPvY5qaGhAaFQiIyMDJUURgpnbaIHE72C92FWNIMGDcKjR48o/AghvFGoEczixYuhr/9x1IHs7GysWrUKJiYm3LT169crrzpSaYhEIowbNw67du3iQk8oFPJcFSFEnckdgO3atUNYWJjMNHd3d+7eLQCVrk/K8oIxhuSMHL7LKDGRSAQPDw9ERUVh3LhxOH/+PN8lEUKI/AEYGBiowjJIcb49cB9RCWl8l1Ein4afk5MTdu7cyXdJhBACoARdoZGy91/UO+55w+omxSxZvnweftTghRBSnlAAlnMSKUNKZi4AIOD79rA01uW5IvlQ+BFCyjsKwHLuh3NPuef6Qk0eK1HMpEmTKPwIIeUaBWA59ywuhXtubaLHYyWK2blzJ7p3707hRwgptxTuDJuULcby/l3ZpwG/hcghKysLOjp5fZRaWVnh9OnTPFdECCFFK9ER4LVr1zBixAi0atUKr169AgAcOHAA169fV2px6i4zR4J7L/I6v7avqv+FpfklFovRsGFD7N+/n+9SCCFELgoH4N9//w0vLy/o6enhwYMHyMrKAgAkJSVh9erVSi9QnSVn5iAzJ2+A2Da1yu/QR/kdWz9//hwrV67kfiYIIaQ8UzgAV65ciW3btmHHjh3Q1v7YJVfr1q0RFBSk1OJIHoGg/HYy8PmoDgEBAdxpUEIIKc8UDsCwsDC0a9euwHQTExN8+PBBGTWR/wsRJ/FdQrFoSCNCSEWmcABaWVkhIiKiwPTr16/DyclJKUWRPNuuRgL42BCmPKHwI4RUdAoH4Pjx4zF9+nTcvn0bAoEAr1+/xsGDBzFr1ixMnDhRFTWqHamU4VTIa9x/8R4A0NPVhueKCjp06BCFHyGkQlP4Noh58+ZBKpWiU6dOSE9PR7t27aCjo4NZs2Zh6tSpqqhR7cz5+yH+uv/y42uvOjxWU7g5c+YAyBsXksKPEFIRCRgr2Qm27OxsREREIDU1FS4uLjA0NFR2bSqRnJwMExMTJCUlwdi4/A0qm5yZg0ZLL3CvNw1tUm6OAF+/fg0zMzPo6laM7tgIIZWTsr7HS9wTjFAohIuLC9zc3Eodflu2bIGDgwN0dXXRokUL3Llzp8hld+zYgbZt26JKlSqoUqUKPD09i12+oon9kMk9D/HtUm7CTywWo23btujXrx8yMzO/vAIhhJRzCp8C9fDwKLZJ/uXLlxV6v8OHD8PHxwfbtm1DixYtsGHDBnh5eSEsLAwWFhYFlg8MDMTQoUPh7u4OXV1d/Pjjj+jSpQuePHkCW1tbRT9OuWVuKCw3I79/2uAFABITE2FjUz6CmRBCSkrhU6AzZ86UeZ2Tk4Pg4GA8fvwY3t7e2Lhxo0IFtGjRAl999RU2b94MAJBKpbCzs8PUqVMxb968L64vkUhQpUoVbN68GaNGjfri8uX5FGhSeg66/XoNrz5kwNxQiHuLOvNdErX2JISUO8r6Hlf4CPCXX34pdPrSpUuRmpqq0HtlZ2fj/v37mD9/PjdNQ0MDnp6euHXrllzvkZ6ejpycHJiZmRU6PysrS6ZnkuTkZIVqLEu3ohLw6kMGAMDWlP+Oryn8CCGVmdJGgxgxYgR2796t0DoJCQmQSCSwtLSUmW5paYm4uDi53mPu3LmwsbGBp6dnofPXrFkDExMT7lEev8AZYwiLS0F0Qjo3bf/YFjxWROFHCKn8lDYaxK1bt8q8deAPP/wAPz8/BAYGFrnt+fPnw8fHh3udnJxc7r7IB2y7xd3zBwAtHM14v/4XGxuLt2/fUvgRQiothQOwX79+Mq8ZY4iNjcW9e/ewePFihd7L3NwcmpqaiI+Pl5keHx8PKyurYtf9+eef8cMPP+DSpUto1KhRkcvp6OiU274pGWM4GfxaJvzszPQwsDn/YePm5oZLly7B2tqawo8QUikpHIAmJiYyrzU0NFCnTh0sX74cXbp0Uei9hEIhmjVrhoCAAPTp0wdAXiOYgIAATJkypcj1fvrpJ6xatQrnz59H8+bNFf0I5caeGzFYfjqUex3i24XXIz+xWIy3b9+iadOmAPJCkBBCKiuFAlAikWDMmDFo2LAhqlSpopQCfHx84O3tjebNm8PNzQ0bNmxAWloaxowZAwAYNWoUbG1tsWbNGgDAjz/+iCVLluDQoUNwcHDgrhUaGhpWmJvx84nff7zmt3V4U97Dr0OHDkhMTERAQAAXgoQQUlkpFICampro0qULnj59qrQAHDx4MN6+fYslS5YgLi4OjRs3hr+/P9cwRiQSQUPjY1udrVu3Ijs7GwMGDJB5H19fXyxdulQpNZW1yR418XVDa962/3mDl2rVqvFWCyGElBWFT4E2aNAAUVFRcHR0VFoRU6ZMKfKUZ2BgoMzrmJgYpW2XL7kSKcbvv4crYW/5LoVaexJC1FaJBsSdNWsWTp8+jdjYWCQnJ8s8SPFyJFK4LrsgE36N7ZRzNK0oCj9CiDqT+whw+fLl+P7779GtWzcAQK9evWS6RGOMQSAQQCKRKL/KSsTvjghp2R/30Y15HXm56f3Vq1cUfoQQtSZ3AC5btgwTJkzAlStXVFlPpRaXlInFJ59wr0OXe0FfqLRbMRVSpUoV2NvbAwCFHyFELcn97ZvfZWj79u1VVkxllpyZg7H77nKvd4xqzlv4AYC+vj5Onz6N9+/fV6pOxAkhRF4KXQMsbhQIUrwd/0bhyeu8a6RNapiis4vlF9ZQPpFIhF9++YX7Y0ZfX5/CjxCithQ6BKldu/YXQzAxMbFUBVVWmy5HcM/X9GtY5tsXiUTw8PDghjT6fFQPQghRNwoF4LJlywr0BEO+LDkzh3u+YXBj1LUq22GYPg0/JyenAvdQEkKIOlIoAIcMGVLoILWkcFIpw+4b0Vh55ik3rZl92d7y8Hn4UYMXQgjJI/c1QLr+p7iQlx9kwq+zi2WZ3vJA4UcIIUVTuBUokd/j1x87BvhjbAu0cTYvs21nZGSgY8eOFH6EEFIEuQNQKpWqso5KZeHxRzgV8hopmbkAAAsjnTINPwDQ09PDnDlzsHbtWly+fJnCjxBCPqO0EeHJR38HveTCDwCmdKzFSx3ffvstHj58SOFHCCGFoABUoT/Ht8T9RZ4Y1cqhTLYnFovRt29fJCQkcNP09Mq+mzVCCKkI+OuKRA3YmemhqmHZjEb/acfWAHD8+PEy2S4hhFRUdASoZFIpQ2ZO2V4v/XxUh19//bVMt08IIRURHQEqEWMMndZf5V4LNVX/9wUNaaQ6UqkU2dnZfJdBiNrR1taGpqamyrdDAahEI3bdRnRCGvfawlhXpduj8FOd7OxsREdHU+tnQnhiamoKKysrld6DTgGoRFFvP4bfw6VdVL690aNHU/ipAGMMsbGx0NTUhJ2dHTQ06EoBIWWFMYb09HS8efMGAGBtba2ybVEAKsmb5EzEJmUCAE5PbQNjXW2Vb3Pnzp0YN24c9u7dS+GnRLm5uUhPT4eNjQ309fX5LocQtZPfev3NmzewsLBQ2elQCkAlWfFJl2e62qo7d52bmwstrbz/NkdHRwQEBKhsW+pKIpEAAIRCIc+VEKK+8v/4zMnJUVkA0rkdJXiflo1/Ql4DyLv1oWY1A5VsRywWo2HDhjh16pRK3p/Iov5vCeFPWfz+UQAqwbj997jne8e4qeQ/Lr/By7NnzzB37lzk5uZ+eSVCCCFFogBUgrSsvDDyrGeJmtUMlf7+n7f2vHDhAncalBBCSMlQAJZSXFImnsWlAABGtbJX+vvTrQ5E2QQCAU6cOKHy7QQGBkIgEODDhw/ctBMnTqBWrVrQ1NTEjBkzsHfvXpiamqqshrCwMFhZWSElJUVl21A3Q4YMwbp16/guQykoAEshI1uClms+NkJxUvK1Pwo/oqi4uDhMnToVTk5O0NHRgZ2dHXr27MlLYyl3d3fExsbCxMSEm/bdd99hwIABEIvFWLFiBQYPHozw8HCV1TB//nxMnToVRkZGBebVrVsXOjo6iIuLKzDPwcEBGzZsKDB96dKlaNy4scw0vvb50aNHUbduXejq6qJhw4Y4e/bsF9fJysrCwoULYW9vDx0dHTg4OGD37t0yy2zYsAF16tSBnp4e7OzsMHPmTGRmZnLzFy1ahFWrViEpKUnpn6ms0Xm0UphyKIh7/m07J1Svotwm89u2baPwKwcYY8jIkfCybT1tTbmvKcfExKB169YwNTXF2rVr0bBhQ+Tk5OD8+fOYPHkynj17puJqZQmFQlhZWXGvU1NT8ebNG3h5ecHGxoabXtoO23NycqCtXfC2I5FIhNOnT2PTpk0F5l2/fh0ZGRkYMGAA9u3bh7lz55Zo23zt85s3b2Lo0KFYs2YNevTogUOHDqFPnz4ICgpCgwYNilxv0KBBiI+Px65du1CrVi3ExsbKdPZw6NAhzJs3D7t374a7uzvCw8MxevRoCAQCrF+/HgDQoEED1KxZE3/88QcmT56sks9XVigASyEl62NDlAXd6in9/VesWAEAmDBhAoUfjzJyJHBZcp6XbYcu94K+UL5f00mTJkEgEODOnTswMPh4NqJ+/fr45ptvilxv7ty5OH78OF6+fAkrKysMHz4cS5Ys4UIlJCQEM2bMwL179yAQCODs7Izff/8dzZs3x4sXLzBlyhRcv34d2dnZcHBwwNq1a9GtWzcEBgbCw8MD79+/R3BwMDw8PAAAHTt2BABcuXIFMTExmDFjhsxp0pMnT2LZsmUIDQ2FjY0NvL29sXDhQu66t0AgwG+//YZz584hICAAs2fPxtKlSwt8riNHjsDV1RW2trYF5u3atQvDhg1D+/btMX369BIHYEn3eWlt3LgRXbt2xezZswHkfVdcvHgRmzdvxrZt2wpdx9/fH1evXkVUVBTMzMwA5B3pfurmzZto3bo1hg0bxs0fOnQobt++LbNcz5494efnV+EDkE6BltCNiATciU4EAGwc0lhp7xsfH8+18NTQ0MCqVaso/MgXJSYmwt/fH5MnT5b5Is5X3HU2IyMj7N27F6Ghodi4cSN27NiBX375hZs/fPhwVK9eHXfv3sX9+/cxb948LhwnT56MrKws/Pvvv3j06BF+/PFHGBoWbAjm7u6OsLAwAMDff/+N2NhYuLu7F1ju2rVrGDVqFKZPn47Q0FD8/vvv2Lt3L1atWiWz3NKlS9G3b188evSoyKC5du0amjdvXmB6SkoKjh49ihEjRqBz585ISkrCtWvXitw/RSnNPj948CAMDQ2LfRRX061bt+Dp6SkzzcvLC7du3SpynVOnTqF58+b46aefYGtri9q1a2PWrFnIyMjglnF3d8f9+/dx584dAEBUVBTOnj2Lbt26ybyXm5sb7ty5g6ysrCK3VxHQEWAJ3Yp8xz1vYGtSzJLyy7/m99VXX+GPP/6glp7lhJ62JkKXe/G2bXlERESAMYa6desqvI1FixZxzx0cHDBr1iz4+flhzpw5APJOJc6ePZt7b2dnZ255kUiE/v37o2HDhgAAJyenQrchFAphYWEBADAzM5M5NfqpZcuWYd68efD29ubeb8WKFZgzZw58fX255YYNG4YxY8YU+7levHhRaAD6+fnB2dkZ9evXB5DXqGPXrl1o27Ztse/3udLs8169eqFFixbFLlPYkWu+uLg4WFpaykyztLQs9HpmvqioKFy/fh26uro4fvw4EhISMGnSJLx79w579uwBkLdfExIS0KZNGzDGkJubiwkTJmDBggUy72VjY4Ps7GzExcXB3l75jf/KCn3DlgBjDJuvRAAAJrSvqZRbHz4fz+/du3cFfsAJPwQCgdynIfnCGCvxuocPH8avv/6KyMhIpKamIjc3F8bGxtx8Hx8fjBs3DgcOHICnpycGDhyImjVrAgCmTZuGiRMn4sKFC/D09ET//v3RqFGjEtcSEhKCGzduyBzxSSQSZGZmIj09nesdpLBg+1xGRgZ0dQt2SL97926MGDGCez1ixAi0b98emzZtKrSxTFFKs8+NjIwU2pYySKVSCAQCHDx4kGuYtH79egwYMAC//fYb9PT0EBgYiNWrV+O3335DixYtEBERgenTp2PFihVYvHgx9175123T09PL9DMoG50CLYHHr5K5590aFv6XrCIKa+1J4UcU4ezsDIFAoHCji1u3bmH48OHo1q0bTp8+jQcPHmDhwoUyw0AtXboUT548Qffu3XH58mW4uLhwAy6PGzcOUVFRGDlyJB49eoTmzZsX2uhEXqmpqVi2bBmCg4O5x6NHj/D8+XOZMCvslOPnzM3N8f79e5lpoaGh+O+//zBnzhxoaWlBS0sLLVu2RHp6Ovz8/LjljI2NC23l+OHDBy48SrrPgdKfArWyskJ8fLzMtPj4+CKPrIG8TqVtbW1lWuXWq1cPjDG8fPkSALB48WKMHDkS48aNQ8OGDdG3b1+sXr0aa9askWksk5iYd/mnWrVqCn/28oQCsATC4j/eU9SwlKc/6VYHogxmZmbw8vLCli1bkJaWVmD+p41MPnXz5k3Y29tj4cKFaN68OZydnfHixYsCy9WuXRszZ87EhQsX0K9fP+6UGQDY2dlhwoQJOHbsGL7//nvs2LGjxJ+jadOmCAsLQ61atQo8FB2Vo0mTJggNDZWZtmvXLrRr1w4hISEyIevj44Ndu3Zxy9WpUwf3798v8J5BQUGoXbs2gJLvcyDvFOin2y/sUdxRbqtWrQrcZnHx4kW0atWqyHVat26N169fIzU1lZsWHh4ODQ0NVK9eHUDeEd3n+zm/H85Pj3gfP36M6tWrw9zcvMjtVQhMzSQlJTEALCkpqcTvMXDbTWY/9zRr99PlUtUiEomYk5MTA8CcnJyYSCQq1fsR5cjIyGChoaEsIyOD71IUEhkZyaysrJiLiwv766+/WHh4OAsNDWUbN25kdevW5ZYDwI4fP84YY+zkyZNMS0uL/fnnnywiIoJt3LiRmZmZMRMTE8YYY+np6Wzy5MnsypUrLCYmhl2/fp3VrFmTzZkzhzHG2PTp05m/vz+Liopi9+/fZy1atGCDBg1ijDF25coVBoC9f/+eMcbY+/fvGQB25coVrpY9e/Zw22KMMX9/f6alpcWWLl3KHj9+zEJDQ9mff/7JFi5cWGj9xTl16hSzsLBgubm5jDHGsrOzWbVq1djWrVsLLBsaGsoAsMePHzPGGLtx4wbT0NBgK1euZKGhoezRo0dswYIFTEtLiz169Ejhfa5sN27cYFpaWuznn39mT58+Zb6+vkxbW1umtnnz5rGRI0dyr1NSUlj16tXZgAED2JMnT9jVq1eZs7MzGzduHLeMr68vMzIyYn/++SeLiopiFy5cYDVr1uT+T/N5e3uzb775RmWfj7Hifw+V8T3OGGMUgArKlUiZ/dzTzH7uaTb1UFCpagkICGA6OjoUfuVMRQ1Axhh7/fo1mzx5MrO3t2dCoZDZ2tqyXr16yYTO5wEye/ZsVrVqVWZoaMgGDx7MfvnlFy6UsrKy2JAhQ5idnR0TCoXMxsaGTZkyhds3U6ZMYTVr1mQ6OjqsWrVqbOTIkSwhIYExVrIAZCwvBN3d3Zmenh4zNjZmbm5ubPv27UXWX5ScnBxmY2PD/P39GWOM/fXXX0xDQ4PFxcUVuny9evXYzJkzudfnz59nrVu3ZlWqVGFVq1ZlHTp0YFevXi2wnjz7XBWOHDnCateuzYRCIatfvz47c+aMzHxvb2/Wvn17mWlPnz5lnp6eTE9Pj1WvXp35+Piw9PR0bn5OTg5bunQpq1mzJtPV1WV2dnZs0qRJ3P8hY3m/HyYmJuzWrVuq/HhlEoACxkpxJbcCSk5OhomJCZKSkmQu9MsrLSsX9X3z7gk7M60N6tuU7hTo5cuX4ezsTKc9y5HMzExER0fD0dGx0EYUpOLYsmULTp06hfPn+bmPszLaunUrjh8/jgsXLqh0O8X9Hpb2ezxf+W7aVs4wxnDgv4/XR0rS+lMkEiEjIwN16tQB8PGmYEKI8n333Xf48OEDUlJSyrzVZWWlra1dqoZO5QkFoJyyciWY4ReMc4/z7rPR1daApoZiwx6JRCJ4eHggPT0dgYGBXAgSQlRDS0sLCxcu5LuMSmXcuHF8l6A0FIByqr/kPHKlH88Wbx/ZHNqa8rdKyw+//Nae+fczEUII4QcFoBzOPIyVCb/zM9qhjpX8p1M+Dz+61YEQQvhHAfgF2blSTP5k1IfI1d0UOvVJ4UcIIeUT3Qj/BYFhb7jn0zs5KxR+YrGYwo8QQsopOgL8gn23Yrjn49sV3tFvUYyMjLhhRyj8CCGkfKEALIZUynAjIm/Uh451LWCoo9juMjU1xcWLF5Gamsp1NUQIIaR8oFOgxUjL/jjg7ZSOteRaRywWY/fu3dxrU1NTCj9SrggEApw4cYLvMhS2d+/eYsfYU4XAwEAIBIJi+/UEgICAANSrVw8SiaRsCqvgWrZsib///pvvMigAi5M/4C0AuFh/ubeB/I6tx44dKxOChJSVuLg4TJ06FU5OTtDR0YGdnR169uxZoONkolxz5szBokWLuI6j82VkZMDMzAzm5uaFDh5b1B8jo0ePRp8+fWSmRUREYMyYMahevTp0dHTg6OiIoUOH4t69e8r8KAVs2bIFDg4O0NXVRYsWLbjBcouyd+9eCAQCmcfnPbksWrQI8+bNkxlhgg8UgEUIEr3H2H0ff7B0vzAw6eejOnTu3FnVJRIiIyYmBs2aNcPly5exdu1aPHr0CP7+/vDw8MDkyZP5Lq/Sun79OiIjI9G/f/8C8/7++2/Ur18fdevWLdVR971799CsWTOEh4fj999/R2hoKI4fP466devi+++/L0X1xTt8+DB8fHzg6+uLoKAguLq6wsvLC2/evCl2PWNjY8TGxnKPz0cY+frrr5GSkoJz586prHZ5UAAW4VjQS+75pA41i12WhjRSD2lpaUU+MjMz5V42IyNDrmUVNWnSJAgEAty5cwf9+/dH7dq1Ub9+ffj4+OC///6TWTYhIQF9+/aFvr4+nJ2dcerUKW6eRCLB2LFj4ejoCD09PdSpUwcbN26UWT//COXnn3+GtbU1qlatismTJyMnJ4dbJisrC3PnzoWdnR10dHRQq1YtmSGHHj9+jK+//hqGhoawtLTEyJEjkZCQoNBnPnnyJJo2bQpdXV04OTlh2bJlyM3Nu3QxbNgwDB48WGb5nJwcmJubY//+/QDyBolds2YN91ldXV3x119/KVSDn58fOnfuXGi/sbt27cKIESMwYsQImc+uCMYYRo8eDWdnZ1y7dg3du3dHzZo10bhxY/j6+uLkyZMlel95rF+/HuPHj8eYMWPg4uKCbdu2QV9f/4tnuAQCAaysrLjH5+Obampqolu3bjJjMPKiVF1pV0Dy9CL++kM6N+LD8B3/sZxcSZHL0pBGlU9RvdADKPLRrVs3mWX19fWLXPbzHvrNzc0LXU4R7969YwKBgK1evfqLywJg1atXZ4cOHWLPnz9n06ZNY4aGhuzdu3eMsbxhg5YsWcLu3r3LoqKi2B9//MH09fXZ4cOHuffw9vZmxsbGbMKECezp06fsn3/+Yfr6+jKjNgwaNIjZ2dmxY8eOscjISHbp0iXm5+fHGMsbGaJatWps/vz57OnTpywoKIh17tyZeXh4FFn35yNH/Pvvv8zY2Jjt3buXRUZGsgsXLjAHBwe2dOlSxhhjp0+fZnp6eiwlJYVb559//mF6enosOTmZMcbYypUrWd26dZm/vz+LjIxke/bsYTo6OiwwMJAxVnBEi8I0atSI/fDDDwWmR0REMB0dHZaYmMjevXvHdHV1WUxMTIH/i8JGtvD29ma9e/dmjDEWFBTEALBDhw4VWUNRVq1axQwMDIp9vHjxotB1s7KymKamZoH6Ro0axXr16lXkNvfs2cM0NTVZjRo1WPXq1VmvXr24YaY+tXXrVmZvb1/k+9BwSCrwpR33LjWLCz/7uafZiQcvi3yv5ORkCr9KqCIG4O3btxkAduzYsS8uC4AtWrSIe52amsoAsHPnzhW5zuTJk1n//v25197e3sze3p4ba48xxgYOHMgGDx7MGGMsLCyMAWAXL14s9P1WrFjBunTpIjNNLBYzACwsLKzQdT4PwE6dOhUI/AMHDjBra2vGWN7QPubm5mz//v3c/KFDh3I1ZmZmMn19fXbz5k2Z9xg7diwbOnQoY0y+ADQxMZHZRr4FCxawPn36cK979+7NfH19ZZaRJwAPHz7MALCgIMWHX3v37h17/vx5sY+cnJxC13316hUDUGD/zJ49m7m5uRW5zZs3b7J9+/axBw8esMDAQNajRw9mbGzMxGKxzHInT55kGhoaTCIp/ACjLAKQboP4P8YYnsamYM25p9y0ZvZV0LuxbZHrGBkZYfz48dixYwed9lQDn46k/bnPGz8Ud43k8xG3Y2JiSlUXIDtatzwaNWrEPTcwMICxsbFMzVu2bMHu3bu50Uuys7PRuHFjmfeoX7++zOe2trbGo0ePAADBwcHQ1NRE+/btC91+SEgIrly5AkPDgiOqREZGcqOuFyckJAQ3btzAqlWruGkSiQSZmZlIT0+Hvr4+Bg0ahIMHD2LkyJFIS0vDyZMnudNuERERSE9PL3C9Pjs7G02aNPni9vNlZGQUOP0pkUiwb98+mVPHI0aMwKxZs7BkyRKFRrdX9P/2U2ZmZty9yGWlVatWMiPTu7u7o169evj999+xYsUKbrqenh6kUimysrKgp6dXpjXmowD8v/NP4jHhj/vca21NAfy+bfnF9ebNm4fJkyfTUCtqwMDAgPdli+Ls7AyBQIBnz57Jtby2trbMa4FAwLXI8/Pzw6xZs7Bu3Tq0atUKRkZGWLt2LW7fvi33e3zpCy01NRU9e/bEjz/+WGCetbW1XJ8hNTUVy5YtQ79+/QrMyw+k4cOHo3379njz5g0uXrwIPT09dO3alVsfAM6cOQNbW9k/dHV0dOSqAQDMzc3x/v17mWnnz5/Hq1evClyDlEgkCAgI4ELXyMgISUlJBd7zw4cPMDHJG2s0/4+BZ8+eKRTMALB69WqsXr262GVCQ0NRo0aNAtPNzc2hqamJ+Ph4menx8fGwsrKSuwZtbW00adIEERERMtMTExNhYGDAW/gB1AgGAJCRLcGkgx/Dr7GdKf6a4F7oaA9isRgjRoxASkoKN43Cj/DNzMwMXl5e2LJlS6ENaL50H9unbty4AXd3d0yaNAlNmjRBrVq1EBkZqVA9DRs2hFQqxdWrVwud37RpUzx58gQODg6oVauWzEPePwiaNm2KsLCwAuvXqlWLO8Jyd3eHnZ0dDh8+jIMHD2LgwIFccLu4uEBHRwcikajA+oqczWnSpAlCQ0Nlpu3atQtDhgxBcHCwzGPIkCEyjWHq1KmD+/fvy6wrkUgQEhLCBV/jxo3h4uKCdevWFXrbQHH/txMmTChQw+cPGxubQtcVCoVo1qyZzC00UqkUAQEBMkd4XyKRSPDo0aMCf9g8fvxY4UBXNjoCBPAsLhn5gz0UN8r7p609AeCPP/4oqxIJ+aItW7agdevWcHNzw/Lly9GoUSPk5ubi4sWL2Lp1K54+ffrlN0He0eT+/ftx/vx5ODo64sCBA7h79y4cHR3lrsXBwQHe3t745ptv8Ouvv8LV1RUvXrzAmzdvMGjQIEyePBk7duzA0KFDMWfOHJiZmSEiIgJ+fn7YuXNngVPKhVmyZAl69OiBGjVqYMCAAdDQ0EBISAgeP36MlStXcssNGzYM27ZtQ3h4OK5cucJNNzIywqxZszBz5kxIpVK0adMGSUlJuHHjBoyNjeHt7S3XZ/Xy8sK+ffu412/fvsU///yDU6dOoUGDBjLLjho1Cn379kViYiLMzMzg4+ODsWPHom7duujcuTPS0tKwadMmvH//nht3TyAQYM+ePfD09ETbtm2xcOFC1K1bF6mpqfjnn39w4cKFIv/QKO0pUB8fH3h7e6N58+Zwc3PDhg0bkJaWhjFjxsh8JltbW6xZswYAsHz5crRs2RK1atXChw8fsHbtWrx48aLAOILXrl1Dly5dSlybUpTqCmIFVNjF0x/OPWX2c08z12Xni1yPWnuqj+Iuvpd3r1+/ZpMnT2b29vZMKBQyW1tb1qtXL3blyhVuGRTS8MLExITt2bOHMZbXOGT06NHMxMSEmZqasokTJ7J58+YxV1dXbvlPG2nkmz59ukwDn4yMDDZz5kxmbW3NhEIhq1WrFtu9ezc3Pzw8nPXt25eZmpoyPT09VrduXTZjxgwmlUoL/WyfN4JhjDF/f3/m7u7O9PT0mLGxMXNzc5NpicoYY6GhoQwAs7e3L/DeUqmUbdiwgdWpU4dpa2uzatWqMS8vL3b16lXGmHyNYPJbeD579owxxtjPP//MTE1NWXZ2doFls7KymKmpKdu4cSM37eDBg6xZs2bMyMiIWVpasm7durGQkJAC64aFhbFRo0YxGxsbJhQKmb29PRs6dGiJGscoYtOmTaxGjRpMKBQyNzc39t9//8nMb9++PfP29uZez5gxg1s+//N8XuPLly+ZtrZ2gYYxnyqLRjACxkpxhbUCSk5OhomJCZKSkmBsnNe7y7y/H8LvrhjamgI8X9WtwDp0n596yczMRHR0NBwdHQu9t4uQz82ePRvJycn4/fff+S6lQpg7dy7ev3+P7du3F7lMcb+HhX2PlwRdAwQg+P8IR1M7OheYR+FHCPmShQsXwt7enveuvSoKCwsLmRahfKFrgJ/4fKQ/xhgGDRpE4UcIKZapqSkWLFjAdxkVhiq7b1MEHQEWQyAQYMeOHWjZsiWFHyGEVDJ0BAjgzztimdcSiYRrhdagQQPcvHkTAoH8I8ETQggp/9T+CPCfkNfccwMdLYjFYjRp0gSBgYHcdAo/9aRm7cMIKVfK4vdPrQNQKmWY+ucD7nUnO0106NABjx49wrRp02hwSzWVf/SfnZ3NcyWEqK/09HQABXscUqZycQp0y5YtWLt2LeLi4uDq6opNmzbBzc2tyOWPHj2KxYsXIyYmBs7Ozvjxxx/RrVvB2xe+RPw+nXu+sH01dOzowTV4OXPmjFw345LKR0tLC/r6+nj79i20tbUV6reREFI6jDGkp6fjzZs3MDU1Ven3MO8BmD/g4rZt29CiRQts2LABXl5eCAsLg4WFRYHlb968iaFDh2LNmjXo0aMHDh06hD59+iAoKKhArwtfkn+EnZv8Fj9MmUatPQmAvFPe1tbWiI6OLjCQJyGkbJiamirU52hJ8H4jfIsWLfDVV19h8+bNAPL6mrOzs8PUqVMxb968AssPHjwYaWlpOH36NDetZcuWaNy4MbZt2/bF7X16A2VitibaLDmKN34LkPM+lsKPyJBKpXQalBAeaGtrF3vkp6wb4Xk9AszOzsb9+/cxf/58bpqGhgY8PT1x69atQte5desWfHx8ZKZ5eXnhxIkThS6flZWFrKws7nVycrLM/OQ7xyj8SKE0NDSoJxhCKjFeL24kJCRAIpHA0tJSZrqlpSXi4uIKXScuLk6h5desWQMTExPu8XnAVfH4BmZuvSj8CCFEzVT6q/vz589HUlIS9xCLP97zZ2Oqh6tzO+PB2T8p/AghRM3wegq0JAMuWllZKbS8jo5OkYNbCrU04GBe+sFICSGEVDy8BuCnAy726dMHwMcBF6dMmVLoOq1atUJAQABmzJjBTbt48aLcAzTmt/n5/FogIYSQiiH/+7vUbThLNZiSEvj5+TEdHR22d+9eFhoayr799ltmamrK4uLiGGOMjRw5ks2bN49b/saNG0xLS4v9/PPP7OnTp8zX15dpa2uzR48eybU9sVjMANCDHvSgBz0q+KO48QTlwft9gIMHD8bbt2+xZMkSxMXFoXHjxvD39+cauohEIpkbkd3d3XHo0CEsWrQICxYsgLOzM06cOCH3PYA2NjYQi8UwMjKCQCBAcnIy7OzsIBaLS9WctrKi/fNltI+KR/vny2gfFe/z/cMYQ0pKCmxsbEr1vrzfB8g3Zd1PUlnR/vky2kfFo/3zZbSPiqeq/VPpW4ESQgghhaEAJIQQopbUPgB1dHTg6+tb5K0S6o72z5fRPioe7Z8vo31UPFXtH7W/BkgIIUQ9qf0RICGEEPVEAUgIIUQtUQASQghRSxSAhBBC1JJaBOCWLVvg4OAAXV1dtGjRAnfu3Cl2+aNHj6Ju3brQ1dVFw4YNcfbs2TKqlB+K7J8dO3agbdu2qFKlCqpUqQJPT88v7s/KQNGfoXx+fn4QCARcX7eVlaL758OHD5g8eTKsra2ho6OD2rVr0+/ZZzZs2IA6depAT08PdnZ2mDlzJjIzM8uo2rL177//omfPnrCxsYFAIChyfNdPBQYGomnTptDR0UGtWrWwd+9exTdcqo7UKgA/Pz8mFArZ7t272ZMnT9j48eOZqakpi4+PL3T5GzduME1NTfbTTz+x0NBQtmjRIoX6Gq1oFN0/w4YNY1u2bGEPHjxgT58+ZaNHj2YmJibs5cuXZVx52VF0H+WLjo5mtra2rG3btqx3795lUywPFN0/WVlZrHnz5qxbt27s+vXrLDo6mgUGBrLg4OAyrrzsKLqPDh48yHR0dNjBgwdZdHQ0O3/+PLO2tmYzZ84s48rLxtmzZ9nChQvZsWPHGAB2/PjxYpePiopi+vr6zMfHh4WGhrJNmzYxTU1N5u/vr9B2K30Aurm5scmTJ3OvJRIJs7GxYWvWrCl0+UGDBrHu3bvLTGvRogX77rvvVFonXxTdP5/Lzc1lRkZGbN++faoqkXcl2Ue5ubnM3d2d7dy5k3l7e1fqAFR0/2zdupU5OTmx7OzssiqRd4ruo8mTJ7OOHTvKTPPx8WGtW7dWaZ3lgTwBOGfOHFa/fn2ZaYMHD2ZeXl4KbatSnwLNzs7G/fv34enpyU3T0NCAp6cnbt26Veg6t27dklkeALy8vIpcviIryf75XHp6OnJycmBmZqaqMnlV0n20fPlyWFhYYOzYsWVRJm9Ksn9OnTqFVq1aYfLkybC0tESDBg2wevVqSCSSsiq7TJVkH7m7u+P+/fvcadKoqCicPXsW3bp1K5OayztlfU/zPhqEKiUkJEAikXAjS+SztLTEs2fPCl0nLi6u0OXj4uJUVidfSrJ/Pjd37lzY2NgU+GGsLEqyj65fv45du3YhODi4DCrkV0n2T1RUFC5fvozhw4fj7NmziIiIwKRJk5CTkwNfX9+yKLtMlWQfDRs2DAkJCWjTpg0YY8jNzcWECROwYMGCsii53Cvqezo5ORkZGRnQ09OT630q9REgUa0ffvgBfn5+OH78OHR1dfkup1xISUnByJEjsWPHDpibm/NdTrkklUphYWGB7du3o1mzZhg8eDAWLlyIbdu28V1auREYGIjVq1fjt99+Q1BQEI4dO4YzZ85gxYoVfJdWqVTqI0Bzc3NoamoiPj5eZnp8fDysrKwKXcfKykqh5SuykuyffD///DN++OEHXLp0CY0aNVJlmbxSdB9FRkYiJiYGPXv25KZJpVIAgJaWFsLCwlCzZk3VFl2GSvIzZG1tDW1tbWhqanLT6tWrh7i4OGRnZ0MoFKq05rJWkn20ePFijBw5EuPGjQMANGzYEGlpafj222+xcOFCmTFS1VFR39PGxsZyH/0BlfwIUCgUolmzZggICOCmSaVSBAQEoFWrVoWu06pVK5nlAeDixYtFLl+RlWT/AMBPP/2EFStWwN/fH82bNy+LUnmj6D6qW7cuHj16hODgYO7Rq1cveHh4IDg4GHZ2dmVZvsqV5GeodevWiIiI4P4wAIDw8HBYW1tXuvADSraP0tPTC4Rc/h8MjLpvVt73tGLtcyoePz8/pqOjw/bu3ctCQ0PZt99+y0xNTVlcXBxjjLGRI0eyefPmccvfuHGDaWlpsZ9//pk9ffqU+fr6VvrbIBTZPz/88AMTCoXsr7/+YrGxsdwjJSWFr4+gcoruo89V9lagiu4fkUjEjIyM2JQpU1hYWBg7ffo0s7CwYCtXruTrI6icovvI19eXGRkZsT///JNFRUWxCxcusJo1a7JBgwbx9RFUKiUlhT148IA9ePCAAWDr169nDx48YC9evGCMMTZv3jw2cuRIbvn82yBmz57Nnj59yrZs2UK3QRRl06ZNrEaNGkwoFDI3Nzf233//cfPat2/PvL29ZZY/cuQIq127NhMKhax+/frszJkzZVxx2VJk/9jb2zMABR6+vr5lX3gZUvRn6FOVPQAZU3z/3Lx5k7Vo0YLp6OgwJycntmrVKpabm1vGVZctRfZRTk4OW7p0KatZsybT1dVldnZ2bNKkSez9+/dlX3gZuHLlSqHfK/n7xNvbm7Vv377AOo0bN2ZCoZA5OTmxPXv2KLxdGg6JEEKIWqrU1wAJIYSQolAAEkIIUUsUgIQQQtQSBSAhhBC1RAFICCFELVEAEkIIUUsUgIQQQtQSBSAhhBC1RAFIirR3716YmpryXUaJCQQCnDhxothlRo8ejT59+pRJPeXN4sWL8e2335bJtgIDAyEQCPDhw4dil3NwcMCGDRtUWoui21DW74E8P4+KCg0NRfXq1ZGWlqbU91UXFICV3OjRoyEQCAo8IiIi+C4Ne/fu5erR0NBA9erVMWbMGLx580Yp7x8bG4uvv/4aABATEwOBQFBgjL6NGzdi7969StleUZYuXcp9Tk1NTdjZ2eHbb79FYmKiQu+jzLCOi4vDxo0bsXDhQpn3z69TKBSiVq1aWL58OXJzc0u9PXd3d8TGxsLExARA0aFy9+7dMgvlimDVqlVwd3eHvr5+ofvLxcUFLVu2xPr168u+uEqAAlANdO3aFbGxsTIPR0dHvssCABgbGyM2NhYvX77Ejh07cO7cOYwcOVIp721lZQUdHZ1ilzExMSmTo9z69esjNjYWIpEIe/bsgb+/PyZOnKjy7RZl586dcHd3h729vcz0/J+V58+f4/vvv8fSpUuxdu3aUm9PKBTCysoKAoGg2OWqVasGfX39Um+vssjOzsbAgQOL/VkZM2YMtm7dqpQ/VNQNBaAa0NHRgZWVlcxDU1MT69evR8OGDWFgYAA7OztMmjQJqampRb5PSEgIPDw8YGRkBGNjYzRr1gz37t3j5l+/fh1t27aFnp4e7OzsMG3atC+emhEIBLCysoKNjQ2+/vprTJs2DZcuXUJGRgakUimWL1+O6tWrQ0dHB40bN4a/vz+3bnZ2NqZMmQJra2vo6urC3t4ea9askXnv/FNO+YHfpEkTCAQCdOjQAYDsUdX27dthY2MjM0wPAPTu3RvffPMN9/rkyZNo2rQpdHV14eTkhGXLln3xy0dLSwtWVlawtbWFp6cnBg4ciIsXL3LzJRIJxo4dC0dHR+jp6aFOnTrYuHEjN3/p0qXYt28fTp48yR2lBQYGAgDEYjEGDRoEU1NTmJmZoXfv3oiJiSm2Hj8/P5kxC/Pl/6zY29tj4sSJ8PT0xKlTpwAA79+/x6hRo1ClShXo6+vj66+/xvPnz7l1X7x4gZ49e6JKlSowMDBA/fr1cfbsWQCyp0ADAwMxZswYJCUlcZ9l6dKlAGRPTw4bNgyDBw+WqS8nJwfm5ubYv38/gLxhhdasWcPtN1dXV/z111/FfvbPyft7cOLECTg7O0NXVxdeXl4Qi8Uy80vyc/Ely5Ytw8yZM9GwYcMil+ncuTMSExNx9erVUm1LHVEAqjENDQ38+uuvePLkCfbt24fLly9jzpw5RS4/fPhwVK9eHXfv3sX9+/cxb948aGtrA8gbCLZr167o378/Hj58iMOHD+P69euYMmWKQjXp6elBKpUiNzcXGzduxLp16/Dzzz/j4cOH8PLyQq9evbgv3V9//RWnTp3CkSNHEBYWhoMHD8LBwaHQ971z5w4A4NKlS4iNjcWxY8cKLDNw4EC8e/cOV65c4aYlJibC398fw4cPBwBcu3YNo0aNwvTp0xEaGorff/8de/fuxapVq+T+jDExMTh//rzM2HdSqRTVq1fH0aNHERoaiiVLlmDBggU4cuQIAGDWrFkYNGiQzNG8u7s7cnJy4OXlBSMjI1y7dg03btyAoaEhunbtiuzs7EK3n5iYiNDQULnGctTT0+PeZ/To0bh37x5OnTqFW7dugTGGbt26IScnBwAwefJkZGVl4d9//8WjR4/w448/wtDQsMB7uru7Y8OGDdzRf2xsLGbNmlVgueHDh+Off/6RCaPz588jPT0dffv2BQCsWbMG+/fvx7Zt2/DkyRPMnDkTI0aMUCgM5Pk9SE9Px6pVq7B//37cuHEDHz58wJAhQ7j5Jfm56NChA0aPHi13nUURCoVo3Lgxrl27Vur3UjulHMWClHPe3t5MU1OTGRgYcI8BAwYUuuzRo0dZ1apVudd79uxhJiYm3GsjIyO2d+/eQtcdO3Ys+/bbb2WmXbt2jWloaLCMjIxC1/n8/cPDw1nt2rVZ8+bNGWOM2djYsFWrVsms89VXX7FJkyYxxhibOnUq69ixI5NKpYW+PwB2/Phxxhhj0dHRDAB78OCBzDKfD1XUu3dv9s0333Cvf//9d2ZjY8MkEgljjLFOnTqx1atXy7zHgQMHmLW1daE1MJY3tpuGhgYzMDBgurq63FAv69evL3IdxhibPHky69+/f5G15m+7Tp06MvsgKyuL6enpsfPnzxf6vvljrolEIpnpn76/VCplFy9eZDo6OmzWrFksPDycAWA3btzglk9ISGB6enrsyJEjjDHGGjZsyJYuXVroNvOHu8kfzufz//t89vb27JdffmGM5Q0JZG5uzvbv38/NHzp0KBs8eDBjjLHMzEymr6/Pbt68KfMeY8eOZUOHDi20js+3UZjCfg8AyAxf9PTpUwaA3b59mzEm38/Fpz+PjH15HMlPFbW/8vXt25eNHj1arvciH2nxFbyk7Hh4eGDr1q3cawMDAwB5R0Nr1qzBs2fPkJycjNzcXGRmZiI9Pb3Q6zA+Pj4YN24cDhw4wJ3Gq1mzJoC806MPHz7EwYMHueUZY5BKpYiOjka9evUKrS0pKQmGhoaQSqXIzMxEmzZtsHPnTiQnJ+P169do3bq1zPKtW7dGSEgIgLwjks6dO6NOnTro2rUrevTogS5dupRqXw0fPhzjx4/Hb7/9Bh0dHRw8eBBDhgzhRucOCQnBjRs3ZP6yl0gkxe43AKhTpw5OnTqFzMxM/PHHHwgODsbUqVNlltmyZQt2794NkUiEjIwMZGdno3HjxsXWGxISgoiICBgZGclMz8zMRGRkZKHrZGRkAAB0dXULzDt9+jQMDQ2Rk5MDqVSKYcOGYenSpQgICICWlhZatGjBLVu1alXUqVMHT58+BQBMmzYNEydOxIULF+Dp6Yn+/fujUaNGxdZfHC0tLQwaNAgHDx7EyJEjkZaWhpMnT8LPzw8AEBERgfT0dHTu3FlmvezsbDRp0kTu7cjze6ClpYWvvvqKW6du3bowNTXF06dP4ebmVqKfi/zTuMqgp6eH9PR0pb2fuqAAVAMGBgaoVauWzLSYmBj06NEDEydOxKpVq2BmZobr169j7NixyM7OLvQXdunSpRg2bBjOnDmDc+fOwdfXF35+fujbty9SU1Px3XffYdq0aQXWq1GjRpG1GRkZISgoCBoaGrC2toaenh4AIDk5+Yufq2nTpoiOjsa5c+dw6dIlDBo0CJ6engpfA/pUz549wRjDmTNn8NVXX+HatWv45ZdfuPmpqalYtmwZ+vXrV2DdwgIlX36rSgD44Ycf0L17dyxbtgwrVqwAkHdNbtasWVi3bh1atWoFIyMjrF27Frdv3y623tTUVDRr1kzmD4981apVK3Qdc3NzAHnX9D5fJv+PJaFQCBsbG2hpyf8VMW7cOHh5eeHMmTO4cOEC1qxZg3Xr1hUIekUMHz4c7du3x5s3b3Dx4kXo6emha9euAMCdGj1z5gxsbW1l1vtS46d8Jfk9KExJfy6UJTExkftjlMiPAlBN3b9/H1KpFOvWreOObvKvNxWndu3aqF27NmbOnImhQ4diz5496Nu3L5o2bYrQ0NACQfslGhoaha5jbGwMGxsb3LhxA+3bt+em37hxA25ubjLLDR48GIMHD8aAAQPQtWtXJCYmwszMTOb98q+3SSSSYuvR1dVFv379cPDgQURERKBOnTpo2rQpN79p06YICwtT+HN+btGiRejYsSMmTpzIfU53d3dMmjSJW+bzIzihUFig/qZNm+Lw4cOwsLCAsbGxXNuuWbMmjI2NERoaitq1a8vMK+yPJQCoV68ecnNzcfv2bbi7uwMA3r17h7CwMLi4uHDL2dnZYcKECZgwYQLmz5+PHTt2FBqAhX2Wwri7u8POzg6HDx/GuXPnMHDgQO66s4uLC3R0dCASiWR+RhQh7+9Bbm4u7t27x/3shYWF4cOHD9yZDWX9XJTU48ePMWDAAF62XZFRIxg1VatWLeTk5GDTpk2IiorCgQMHsG3btiKXz8jIwJQpUxAYGIgXL17gxo0buHv3LvcFMHfuXNy8eRNTpkxBcHAwnj9/jpMnTyrcCOZTs2fPxo8//ojDhw8jLCwM8+bNQ3BwMKZPnw4gr/Xen3/+iWfPniE8PBxHjx6FlZVVobc1WFhYQE9PD/7+/oiPj0dSUlKR2x0+fDjOnDmD3bt3c41f8i1ZsgT79+/HsmXL8OTJEzx9+hR+fn5YtGiRQp+tVatWaNSoEVavXg0AcHZ2xr1793D+/HmEh4dj8eLFuHv3rsw6Dg4OePjwIcLCwpCQkICcnBwMHz4c5ubm6N27N65du4bo6GgEBgZi2rRpePnyZaHb1tDQgKenJ65fvy53vc7OzujduzfGjx+P69evIyQkBCNGjICtrS169+4NAJgxYwbOnz+P6OhoBAUF4cqVK0We+nZwcEBqaioCAgKQkJBQ7Om7YcOGYdu2bbh48aLM/4eRkRFmzZqFmTNnYt++fYiMjERQUBA2bdqEffv2yfW55P090NbWxtSpU3H79m3cv38fo0ePRsuWLblALMnPxahRozB//vxi6xOJRAgODoZIJIJEIkFwcDCCg4NlGgbFxMTg1atX8PT0lOszk0/wfRGSqFZhDSfyrV+/nllbWzM9PT3m5eXF9u/fX2RDhaysLDZkyBBmZ2fHhEIhs7GxYVOmTJFp4HLnzh3WuXNnZmhoyAwMDFijRo0KNGL51Jcu7EskErZ06VJma2vLtLW1maurKzt37hw3f/v27axx48bMwMCAGRsbs06dOrGgoCBuPj5rdLBjxw5mZ2fHNDQ0WPv27YvcPxKJhFlbWzMALDIyskBd/v7+zN3dnenp6TFjY2Pm5ubGtm/fXuTn8PX1Za6urgWm//nnn0xHR4eJRCKWmZnJRo8ezUxMTJipqSmbOHEimzdvnsx6b9684fYvAHblyhXGGGOxsbFs1KhRzNzcnOno6DAnJyc2fvx4lpSUVGRNZ8+eZba2tlzjnqL2xacSExPZyJEjmYmJCfczEx4ezs2fMmUKq1mzJtPR0WHVqlVjI0eOZAkJCYyxgo1gGGNswoQJrGrVqgwA8/X1ZYwV3kAlNDSUAWD29vYFGjxJpVK2YcMGVqdOHaatrc2qVavGvLy82NWrV4v8HJ9vQ97fg7///ps5OTkxHR0d5unpyV68eCHzvl/6ufj857F9+/bM29u7yDoZy/s/wf8bTX36yP+/Z4yx1atXMy8vr2LfhxROwBhjfAQvIYQ/jDG0aNGCO5VNKqbs7Gw4Ozvj0KFDBRqMkS+jU6CEqCGBQIDt27dT7yEVnEgkwoIFCyj8SoiOAAkhhKglOgIkhBCiligACSGEqCUKQEIIIWqJApAQQohaogAkhBCiligACSGEqCUKQEIIIWqJApAQQohaogAkhBCilv4HwQ2yHHFEpfEAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -5766,7 +5657,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 23, "id": "c2ea5a1f-2a7f-43f2-b259-7821f6b12348", "metadata": {}, "outputs": [ @@ -5776,13 +5667,13 @@ "" ] }, - "execution_count": 27, + "execution_count": 23, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGgCAYAAABFdAY8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA0Y0lEQVR4nO3de3gU9b3H8c/s7OYqgSRKoLUUH9qIKIEA4dIHLE3V06PY08jpOSoXBYOgReyFoigULaAoVK0ICgakVixKERS11WrtsVqu1srTAioV8QopEkghZDc7O+cPSGRN2GyWvcxm3q/nyRMy85vd73zZTD47Mztj2LZtCwAAwCU8qS4AAAAgmQg/AADAVQg/AADAVQg/AADAVQg/AADAVQg/AADAVQg/AADAVQg/AADAVbypLsCJbNtWKMS1H7/I4zHoSwT0JzL6Exn9aR09iszt/fF4DBmGEdVYwk8LQiFbBw4cSXUZjuL1epSfn6va2joFg6FUl+M49Ccy+hMZ/WkdPYqM/kgFBbkyzejCD4e9AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAq3hTXQAASJJhRDfOthNbB4D2j/ADIOU6dcqRz2dGNbahwdLBg3UJrghAe0b4AZBShiH5fKZmV22QP2BFHJuZYWpm5RAZBnuAAMSO8APAEfwBS/6GyOEHAOKBE54BAICrEH4AAICrEH4AAICrEH4AAICrOCr8LFmyRGPGjDnp/BkzZqi8vDxsWigU0v33369hw4apb9++mjBhgj788MNElwoAANKUY8LPypUrdd999510/ksvvaTVq1c3m7548WI9/vjjmj17tlatWqVQKKTKykoFAoEEVgsAANJVysPPvn37NGnSJC1YsEDdu3dvcUx1dbVmzpypgQMHhk0PBAJavny5pkyZouHDh6tnz5669957tXfvXr344otJqB4AAKSblIeff/zjH/L5fHrmmWfUp0+fZvNt29bNN9+s//qv/2oWfnbu3KkjR45oyJAhTdPy8vLUq1cvbdmyJeG1AwCA9JPyixyWl5c3O4/nRCtWrNC//vUvPfTQQ1qyZEnYvL1790qSunbtGja9c+fOTfNi5fWmPBc6iml6wr4jHP2JLJr+GIYho5UbfDXOb2995vXTOnoUGf1pm5SHn0h27typBx54QCtXrlRGRkaz+UePHpWkZvMyMzN16NChmJ/X4zGUn58b8/LtWV5edqpLcDT6E1mk/pheU95Wbllheo/d/6u9/n7y+mkdPYqM/kTHseHH7/dr6tSpuu6669SzZ88Wx2RlZUk6du5P478bl83Ojv0FEArZqq3lxoknMk2P8vKyVVt7VJYVSnU5jkN/ImutP/n5ubKCloLByLe3MI/vGKqpOZKIMlOG10/r6FFk9OdY8It2z5djw89bb72ld999Vw888IAWLVokSWpoaFAwGFRpaakefvjhpsNd1dXV6tatW9Oy1dXVOvvss0/p+YNBd754WmNZIXoTAf2JrKX+NB7psm1bdit3K22cb1mhdnljU14/raNHkdGf6Dg2/JSUlDT7xNavf/1rvfjii/r1r3+toqIieTwenXbaadq0aVNT+KmtrdX27ds1evToVJQNAAAczrHhJysrS1/96lfDpnXs2FFerzds+ujRo7VgwQIVFBToy1/+subPn68uXbrooosuSnbJAAAgDTg2/ERrypQpCgaDmjFjhurr61VWVqZly5bJ5/OlujQAAOBAht3aQXYXsqyQDhxoXydUniqv16P8/FzV1BzheHIL6E9kkfpjGNLpp3fQjMWvyd8Q+YTnTJ+pOdcP1f79/25X5/zw+mkdPYqM/kgFBblRn/DMBQEAAICrEH4AAICrpP05PwCSq5WLMDdpT4elALQvhB8AUevUKUc+nxnV2IYGSwcPcrFQAM5D+AEQFcOQfD5Ts6s2yB9o5cTkDFMzK4fIMNgDBMB5CD8A2sQfsFr9VBYAOBknPAMAAFch/AAAAFch/AAAAFch/AAAAFch/AAAAFch/AAAAFch/AAAAFch/AAAAFfhIocAEqal+4B9cVq09woDgHgh/ACIO9NjKGiFVFjYIWx6fn5uiioCgM8RfgDEnWl65DU9TfcBMwxDpteUFbRkf+FmXx1yfbrpqkFtenzuLA/gVBB+ACRM433ADMOQ15aCLYSfjEB0d4mXTr5H6WS4szyAlhB+AKSNL+5RioQ7ywM4GcIPgLTDneUBnAo+6g4AAFyF8AMAAFyF8AMAAFyF8AMAAFyF8AMAAFyF8AMAAFyF8AMAAFyF8AMAAFyF8AMAAFyF8AMAAFyF8AMAAFyF8AMAAFyF8AMAAFyF8AMAAFyF8AMAAFyF8AMAAFyF8AMAAFzFUeFnyZIlGjNmTNi0P/7xjxo5cqRKS0tVXl6uu+66S/X19U3z/X6/br/9dg0ZMkSlpaX6yU9+ogMHDiS7dAAAkCYcE35Wrlyp++67L2za1q1bNXnyZF144YVau3atZs2apeeff163335705jbbrtNr732mhYuXKhf/epXeu+99zRlypQkVw8AANJFysPPvn37NGnSJC1YsEDdu3cPm7dq1SoNGjRIkyZNUvfu3fXNb35TP/rRj7R+/XoFAgHt27dP69at04wZMzRgwACVlJTonnvu0ZYtW/Tmm2+mZoUAAICjeVNdwD/+8Q/5fD4988wzWrRokT7++OOmeePHj5fHE57PPB6PGhoadPjwYb3xxhuSpMGDBzfNP+uss1RUVKQtW7aotLQ05rq83pTnQkcxTU/Yd4RzU38Mw5BhGK2OCRvbONyQDBmRx7blcaMYmw7/J256/cSKHkVGf9om5eGnvLxc5eXlLc7r1atX2M8NDQ1asWKFzjvvPBUUFGjfvn3Kz89XZmZm2LjOnTtr7969Mdfk8RjKz8+Nefn2LC8vO9UlOJob+mN6TXnt1sZ4WhzrNc2ox7blcU9Wp6S0+l12w+vnVNGjyOhPdFIefqIVDAY1bdo0vfvuu1q5cqUk6ejRo8rIyGg2NjMzU36/P+bnCoVs1dbWxbx8e2SaHuXlZau29qgsK5TqchzHLf3Jz8+VFbQUDFoRx1lB8/j342ONY8EnaFmS3crYtjxuBObxHUM1NUcijnMCt7x+TgU9ioz+HAt+0e75Sovwc/jwYf3whz/U5s2b9cADD6ikpESSlJWVpUAg0Gy83+9Xdvappd9g0J0vntZYVojeRNCe+9N4lMm2bdl25N0ujfMbxzYd6rLVbNkvjm3L40Yz1rJCamWoY7Tn10+80KPI6E90HB9+qqurNWHCBH388cdatmyZysrKmuZ16dJFBw8eVCAQCNsDVF1draKiolSUCwAAHM7RZ0YdOnRIV111lQ4cOKCVK1eGBR9J6t+/v0KhUNOJz5K0e/du7du3r9lYAAAAyeF7fu688059+OGHqqqqUkFBgf71r381zSsoKFBRUZEuueQSzZgxQ3fccYeys7M1a9YsDRw4UH379k1d4QAAwLEcG34sy9Lzzz+vhoYGXXXVVc3mv/zyyzrzzDM1e/Zs3XHHHZo8ebIk6fzzz9eMGTOSXS4AAEgTjgo/8+bNa/q3aZratm1bq8vk5ORozpw5mjNnTiJLAwAA7YSjz/kBAACIN8IPAABwFcIPAABwFcIPAABwFcIPAABwFcIPAABwFcIPAABwFcIPAABwFcIPAABwFcIPAABwFcIPAABwFcIPAABwFcIPAABwFUfd1R0A4s0wohtn24mtA4BzEH4AtEumx1DQCqmwsENU4xsaLB08WJfgqgA4AeEHQLtkmh55TY9mV22QP2BFHJuZYWpm5RAZBnuAADcg/ABo1/wBS/6GyOEHgLtwwjMAAHAV9vwAwHGcHA24A+EHgOtxcjTgLoQfAK7HydGAuxB+AOA4To4G3IETngEAgKsQfgAAgKsQfgAAgKsQfgAAgKsQfgAAgKsQfgAAgKsQfgAAgKsQfgAAgKtwkUMAUd3TKtr7XgGA0xF+AJfr1ClHPp+Z6jIAIGkIP4CLGYbk85lR3dOqQ65PN101KEmVAUDiEH4ARHVPq4wAe4cAtA+c8AwAAFyF8AMAAFzFUeFnyZIlGjNmTNi0HTt2aPTo0erbt6/Ky8v16KOPhs0PhUK6//77NWzYMPXt21cTJkzQhx9+mMyyAQBAGnFM+Fm5cqXuu+++sGk1NTUaN26cunXrpjVr1ugHP/iBFixYoDVr1jSNWbx4sR5//HHNnj1bq1atUigUUmVlpQKBQJLXAAAApIOUn/C8b98+zZo1S5s2bVL37t3D5j355JPy+Xz6+c9/Lq/Xqx49emjPnj1aunSpRo4cqUAgoOXLl2vq1KkaPny4JOnee+/VsGHD9OKLL2rEiBHJXyEAAOBoKd/z849//EM+n0/PPPOM+vTpEzZv69atGjhwoLzezzPa4MGD9f7772v//v3auXOnjhw5oiFDhjTNz8vLU69evbRly5akrQMAAEgfKd/zU15ervLy8hbn7d27V8XFxWHTOnfuLEn69NNPtXfvXklS165dm41pnBcrrzfludBRTNMT9h3h0r0/hmHIaOUSzo3zYxrbONyQDBmRxyaqhjiPjef/dbq/fpKBHkVGf9om5eEnkvr6emVkZIRNy8zMlCT5/X4dPXpUklocc+jQoZif1+MxlJ+fG/Py7VleXnaqS3C0dO2P6TXltVsb4znlsV6z+bWC4vG4yR17bB0SsY1I19dPMtGjyOhPdBwdfrKyspqduOz3+yVJOTk5ysrKkiQFAoGmfzeOyc6O/QUQCtmqra2Lefn2yDQ9ysvLVm3tUVlWKNXlOE469yc/P1dW0FIwGPkih1bQPP49hrHGseATtCzJbmVsomqI01jz+I6hmpojEce1RTq/fpKFHkVGf44Fv2j3fDk6/HTp0kXV1dVh0xp/LioqUjAYbJrWrVu3sDFnn332KT13MOjOF09rLCtEbyJIt/40HuGxbVu2HXmXR+P8WMY2Heqy1WzZU3ncVI61rJBaGdpm6fb6SQV6FBn9iY6jDw6WlZXpjTfekGV9/k5s48aNOuuss1RYWKiePXvqtNNO06ZNm5rm19bWavv27SorK0tFyQAAwOEcHX5Gjhypw4cP69Zbb9WuXbv01FNPacWKFZo4caKkY+f6jB49WgsWLNDLL7+snTt36kc/+pG6dOmiiy66KMXVAwAAJ3L0Ya/CwkJVVVVp7ty5qqio0BlnnKFp06apoqKiacyUKVMUDAY1Y8YM1dfXq6ysTMuWLZPP50th5QAAwKkcFX7mzZvXbFpJSYmeeOKJky5jmqZ++tOf6qc//WkiSwMAAO2Eow97AQAAxBvhBwAAuArhBwAAuArhBwAAuArhBwAAuArhBwAAuArhBwAAuArhBwAAuArhBwAAuArhBwAAuArhBwAAuArhBwAAuArhBwAAuArhBwAAuArhBwAAuArhBwAAuArhBwAAuArhBwAAuArhBwAAuArhBwAAuArhBwAAuIo31QUASAzDiM8YAGhvCD9AO9SpU458PjPVZQCAIxF+gHbGMCSfz9Tsqg3yB6yIYzvk+nTTVYOSVBkAOAPhB2in/AFL/obI4ScjwN4hAO7DCc8AAMBVCD8AAMBVCD8AAMBVCD8AAMBVCD8AAMBVCD8AAMBVEhJ+9u7dm4iHBQAAOGUxhZ9zzjlH27Zta3He1q1b9Z//+Z+nVBQAAECiRH2Rw+XLl6uurk6SZNu2Vq9erVdffbXZuDfffFMZGRnxqxAAACCOog4/fr9fDzzwgCTJMAytXr262RiPx6MOHTrouuuui1+FAAAAcRR1+LnuuuuaQk3Pnj315JNPqqSkJGGFAQAAJEJM9/bauXNnvOsAAABIiphvbPr666/rlVde0dGjRxUKhcLmGYahO+6445SLaxQMBrVo0SKtW7dOBw8eVK9evfTTn/5Uffv2lSTt2LFDc+fO1d///ncVFBTo6quv1tixY+P2/AAAoP2IKfwsX75cd999tzIzM1VQUCDDMMLmf/HnU/Xggw9q9erVmjdvnr7yla/o4YcfVmVlpZ5//nn5fD6NGzdO5eXluv322/W3v/1Nt99+u3JzczVy5Mi41gEAANJfTOHnscce06WXXqq5c+cm5ZNdL730kkaMGKGhQ4dKkm6++WatXr1af/vb37R79275fD79/Oc/l9frVY8ePbRnzx4tXbqU8AMAAJqJ6To/+/fv13//938n7SPthYWFeuWVV/TRRx/Jsiw98cQTysjIUM+ePbV161YNHDhQXu/nOW7w4MF6//33tX///qTUBwAA0kdMe3569eqld999V4MGDYp3PS269dZbdeONN+rb3/62TNOUx+PRwoUL1a1bN+3du1fFxcVh4zt37ixJ+vTTT3X66afH9JxeL3f+OJFpesK+I5wT+2MYRquHoBvnJ3xs43BDMtTyYXJH1RvF2Hj+Xzvx9eM09Cgy+tM2MYWfW265RT/84Q+Vk5OjPn36KDs7u9mYL33pS6dcXKNdu3apQ4cOWrRokYqKirR69WpNnTpVjz32mOrr65vtgcrMzJR07NpEsfB4DOXn555y3e1RXl7z/2t8LpH9CVoheduwYTO9prx2a2M8SR3rNc2U13DqY4+tQyK2Efx+tY4eRUZ/ohNT+LniiisUCoV0yy23nPRd0o4dO06psEaffvqpfvKTn2jFihUaMGCAJKl3797atWuXFi5cqKysLAUCgbBlGkNPTk5OTM8ZCtmqra07tcLbGdP0KC8vW7W1R2VZodYXcJlk9Cc/P1dzlm2UP2BFHNch16dpYwfKCloKBiOPtYLm8e8JHmscCz5By5LsVsY6od4IzOObvJqaIxHHtQW/X62jR5HRn2PBL9o9XzGFn9mzZ8f9E10n89Zbb6mhoUG9e/cOm96nTx+9+uqr+tKXvqTq6uqweY0/FxUVxfy8waA7XzytsawQvYkgUf1p/HWr9wflb4j8x9l3fC+Gbduy7ci7MRrnJ3ps06EuW82WTVYN8R5rWSG1MrTN+P1qHT2KjP5EJ6bwc9lll8W7jpPq0qWLJOntt98Ou6L0O++8o+7du6tPnz5atWqVLMuSeXyX+saNG3XWWWepsLAwaXUCAID0EFP42bJlS6tjysrKYnnoZkpKStS/f3/ddNNNmjVrlrp06aJ169Zpw4YN+s1vfqMzzzxTVVVVuvXWW1VZWalt27ZpxYoVuv322+Py/AAAoH2JKfyMGTNGhmGE7R7+4mGweJ3z4/F49OCDD+q+++7T9OnTdejQIRUXF2vFihXq06ePJKmqqkpz585VRUWFzjjjDE2bNk0VFRVxeX4AANC+xBR+Hn300WbT6urqtHXrVj399NNauHDhKRd2oo4dO2rWrFmaNWtWi/NLSkr0xBNPxPU5AQBA+xRT+Bk4cGCL04cPH66cnBw9+OCDWrJkySkVBgAAkAhxvxrSgAEDtHnz5ng/LAAAQFzEPfz88Y9/VG4uFwgEAADOFNNhr7FjxzabFgqFtHfvXn388ceaMGHCKRcGAACQCDGFn5YuAubxeFRcXKyJEydyN3UAAOBYMYWfX//61/GuAwAAICliCj+NXn31VW3evFm1tbUqKChQ//79NWzYsHjVBgAAEHcxhZ9AIKDrr79er732mkzTVH5+vmpqarRkyRINHjxYS5YsaXandQAAACeI6dNeCxcu1BtvvKG7775b27Zt02uvvaa33npLd955p/72t7/pwQcfjHedAAAAcRFT+Hn22Wc1efJkffe73226majX69X3vvc9TZ48WevXr49rkQAAAPESU/g5cOCAevXq1eK8Xr16ad++fadUFAAAQKLEFH66deumN954o8V5W7ZsUdeuXU+pKAAAgESJ6YTnyy+/XPPmzVNWVpYuueQSnX766dq/f7+effZZPfzww5o8eXK86wQAAIiLmMLPFVdcoe3bt2vBggX6xS9+0TTdtm1VVFTo2muvjVuBAAAA8RTzR93nzp2r8ePHa/PmzTp06JAMw9AFF1ygHj16xLtGAACAuGnTOT9vv/22Ro4cqUceeUSS1KNHD11xxRW68sor9ctf/lI//vGPtXv37oQUCgAAEA9Rh5+PPvpIY8eO1f79+3XWWWeFzfP5fJo2bZoOHjyoK6+8kk97AQAAx4o6/CxdulSdOnXS2rVr9Z3vfCdsXnZ2tq6++mr99re/VWZmppYsWRL3QgEAAOIh6vCzYcMGVVZWqqCg4KRjzjjjDI0fP16vv/56XIoDAKcyjOi+ADhP1Cc8V1dXq3v37q2OKy4u1t69e0+lJgBwLNNjKGiFVFjYIarxDQ2WDh6sS3BVANoi6vBTUFCg6urqVsfV1NSoY8eOp1QUADiVaXrkNT2aXbVB/oAVcWxmhqmZlUNkGJJtJ6lAAK2K+rBXWVmZnnrqqVbHrVu37qS3vgCA9sIfsORvaOWrlXAEIDWiDj9jxozRpk2bNG/ePPn9/mbzA4GA7r77br366qsaNWpUXIsEAACIl6gPe/Xu3VvTp0/XHXfcoaefflpDhgzRmWeeKcuy9Mknn2jTpk2qqanRjTfeqGHDhiWyZgAAgJi16QrPo0aNUs+ePbVs2TK9/PLLTXuAcnNzNXToUI0fP159+vRJSKEAAADx0ObbW/Tv31/9+/eXJB04cEBer1d5eXlxLwwAACARYrq3V6NI1/wBAABwojbd2wsAACDdEX4AAICrEH4AAICrEH4AAICrEH4AAICrEH4AAICrEH4AAICrEH4AAICrEH4AAICrpE34WbdunS6++GL17t1bl1xyiX73u981zfvoo480ceJE9evXT0OHDtV9990ny7JSWC0AAHCqtAg/Tz/9tG699VaNGjVKzz33nEaMGKEf//jHevPNN9XQ0KBrrrlGkrRq1Srddttt+s1vfqNFixaluGoAAOBEp3Rvr2SwbVu//OUvNXbsWI0aNUqSdN1112nr1q3avHmzPv74Y33yySd68skn1bFjRxUXF+uzzz7T3XffrUmTJikjIyPFawDA7Qwj1RUAOJHjw8/u3bv18ccf69JLLw2bvmzZMknSbbfdpnPPPVcdO3Zsmjd48GAdPnxYO3bsUJ8+fZJaLwA0Mj2GglZIhYUdohp/WocsHaypS3BVANIi/EhSXV2drrnmGm3fvl1nnnmmrrvuOpWXl2vv3r3q0qVL2DKdO3eWJH366acxhx+vNy2OCCaNaXrCviNcsvpjGIaMVnYjNM531NjG4YZkyIg81gn1xmms12vKa3o0Z9lG+QMRzkM0pJysDE2/uoxtz0mwDYqM/rSN48PP4cOHJUk33XSTJk+erKlTp+qFF17Q9ddfr0ceeUT19fXKy8sLWyYzM1OS5Pf7Y3pOj8dQfn7uqRXeTuXlZae6BEdLdH9Mrymv3doYj2PHek0z5TWkYmwwJFmRxtqSv+FYOGLbExnboMjoT3QcH358Pp8k6ZprrlFFRYUk6ZxzztH27dv1yCOPKCsrS4FAIGyZxtCTk5MT03OGQrZqa9n1fCLT9CgvL1u1tUdlWaFUl+M4yehPfn6urKClYDDyJxmtoHn8u4PGGseCT9CyJLuVsU6oN9ljDSnDd2xsTc2RiI/pVmyDIqM/x4JftHu+HB9+ioqKJEnFxcVh07/2ta/pT3/6kwYOHKh33nknbF51dXXYsrEIBt354mmNZYXoTQSJ6k/j0RXbtmXbkXc3NM530timQ122mi3rxHqTPfbEQ4GWFVIrD+tqbIMioz/RcfzBwXPPPVe5ubl66623wqa/88476tatm8rKyrR9+/amw2OStHHjRuXm5qpnz57JLhcAADic48NPVlaWKisrtWjRIj377LP64IMP9OCDD+r111/XuHHjdMEFF+iMM87QD3/4Q+3cuVMvvfSS7rnnHo0fP56PuQMAgGYcf9hLkq6//nplZ2fr3nvv1b59+9SjRw8tXLhQgwYNkiRVVVXp9ttv1//8z/+oY8eOuvLKK3X99denuGoAAOBEaRF+JGncuHEaN25ci/O++tWvavny5UmuCAAApCPHH/YCAACIJ8IPAABwFcIPAABwFcIPAABwFcIPAABwFcIPAABwFcIPAABwFcIPAABwFcIPAABwlbS5wjPQXhlGfMYAAKJD+AFSqFOnHPl8ZqrLAABXIfwAKWIYks9nanbVBvkDVsSxHXJ9uumqQUmqDADaN8IPkGL+gCV/Q+TwkxFg7xAAxAsnPAMAAFch/AAAAFch/AAAAFch/AAAAFch/AAAAFch/AAAAFfho+4A4CDRXs3bthNbB9CeEX4AwAFMj6GgFVJhYYeoxjc0WDp4sC7BVQHtE+EHABzANA15TU9UV/zOzDA1s3KIDIM9QEAsCD8A4CDRXPEbwKnhhGcAAOAqhB8AAOAqhB8AAOAqhB8AAOAqhB8AAOAqhB8AAOAqhB8AAOAqhB8AAOAqhB8AAOAqhB8AAOAqhB8AAOAqhB8AAOAqhB8AAOAqhB8AAOAqaRV+du/erdLSUj311FNN03bs2KHRo0erb9++Ki8v16OPPprCCgEAgNOlTfhpaGjQ1KlTVVdX1zStpqZG48aNU7du3bRmzRr94Ac/0IIFC7RmzZoUVgoAAJzMm+oCorVw4UKddtppYdOefPJJ+Xw+/fznP5fX61WPHj20Z88eLV26VCNHjkxRpQAAwMnSYs/Pli1b9MQTT2jevHlh07du3aqBAwfK6/08ww0ePFjvv/++9u/fn+wyAQBAGnD8np/a2lpNmzZNM2bMUNeuXcPm7d27V8XFxWHTOnfuLEn69NNPdfrpp8f8vF5vWuTCpDFNT9h3hDuV/hiGIcMwWh2T1mMbhxuSISPyWCfUm+yxJ8xqy+O66feRbVBk9KdtHB9+brvtNpWWlurSSy9tNq++vl4ZGRlh0zIzMyVJfr8/5uf0eAzl5+fGvHx7lpeXneoSHC2W/pheU167tTGedjHWa5opr8GpYz9fJprHPdZHN26n2AZFRn+i4+jws27dOm3dulXr169vcX5WVpYCgUDYtMbQk5OTE/PzhkK2amvrWh/oIqbpUV5etmprj8qyQqkux3Fi7U9+fq6soKVg0Io4zgqax7+n6VjjWPAJWpZktzLWCfUme6whSb6oH9c8vmOopuZIxHHtCdugyOjPseAX7Z4vR4efNWvW6LPPPtPw4cPDps+aNUvPP/+8unTpourq6rB5jT8XFRWd0nMHg+588bTGskL0JoK29KfxyIZt27LtyG/1G+en69imQ122mi3rxHqTPfbEQ4FteVzLCqmVoe0O26DI6E90HB1+FixYoPr6+rBpF110kaZMmaLvfve7evrpp7Vq1SpZliXz+O70jRs36qyzzlJhYWEqSgYAAA7n6DOjioqK9NWvfjXsS5IKCwtVVFSkkSNH6vDhw7r11lu1a9cuPfXUU1qxYoUmTpyY4soBIPEMI7ovAOEcveenNYWFhaqqqtLcuXNVUVGhM844Q9OmTVNFRUWqSwOAhDE9hoJWSIWFHaIa39Bg6eBBzmMEGqVd+Hn77bfDfi4pKdETTzyRomoAIPlM0yOv6dHsqg3yByKfHJ2ZYWpm5RAZhlx3fhBwMmkXfgAAx/gDlvwNkcMPgOYcfc4PAABAvBF+AACAqxB+AACAqxB+AACAqxB+AACAq/BpLyABormwHBefA4DUIPwAcdapU458vuZ3LwcAOAPhB4gzn8+M6uJzHXJ9uumqQUmqCgDQiPADJEA0F5/LCLB3CABSgROeAQCAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAq6RF+Dl48KB+9rOf6fzzz1e/fv10xRVXaOvWrU3zN2zYoMsuu0x9+vTRd77zHT333HMprBYAADhZWoSfH//4x3rzzTd1zz33aM2aNTrnnHN0zTXX6L333tM///lPTZw4UcOGDdNTTz2l73//+5o2bZo2bNiQ6rIBAIADeVNdQGv27Nmj119/XY8//rj69+8vSZo5c6b+/Oc/a/369frss8909tln60c/+pEkqUePHtq+fbuqqqo0ZMiQVJYOAAAcyPHhJz8/X0uXLlXv3r2bphmGIcMwVFtbq61bt+qCCy4IW2bw4MGaO3eubNuWYRgxPa/XmxY7xZLGND1h3xHui/1pfI1G0jjfFWMbhxuSISPyWCfUm+yxJ8xKVA3p/rvLNigy+tM2jg8/eXl5+uY3vxk27YUXXtCePXt0yy23aO3aterSpUvY/M6dO+vo0aOqqalRQUFBm5/T4zGUn597SnW3V3l52akuISWCVkjeKDYqjf0xvaa8duSx5vGA7aaxXtNMeQ1OHfv5MvGu4VjP28s2za3boGjRn+g4Pvx80V//+ldNnz5dF110kYYPH676+nplZGSEjWn8ORAIxPQcoZCt2tq6U661PTFNj/LyslVbe1SWFUp1OUmXn5+rOcs2yh+wWh5gSKZpKifTo2ljB8oKWgoGTzL2OCtoHv/ugrHGseATtCzJbmWsE+pN9lhDknwJqcE8vmOopuZIxHFO5/ZtUGvoz7HgF+2er7QKPy+99JKmTp2qfv36acGCBZKkzMzMZiGn8efs7NgTcDDozhdPaywr5LreNB5VqPcH5W9o+Q+NYRjyej//Q2Pbtmw78lvyxvluGNt0qMtWs2WdWG+yx554KDBRNVhWSK0MTQtu3Aa1Bf2JTtocHHzsscd0ww036Fvf+pYeeughZWZmSpK6du2q6urqsLHV1dXKyclRhw4dUlEqAABwsLQIP48//rhmz56tUaNG6Z577gk7zDVgwABt3rw5bPzGjRvVr18/eTxpsXoAACCJHH/Ya/fu3brjjjt04YUXauLEidq/f3/TvKysLI0ZM0YVFRVasGCBKioq9H//93/6/e9/r6qqqhRWDQAAnMrx4eeFF15QQ0OD/vCHP+gPf/hD2LyKigrNmzdPixcv1vz58/WrX/1KZ555pubPn881fgAAQIscH34mTZqkSZMmRRxz/vnn6/zzz09SRQAAIJ1xUgwAAHAVwg8AAHAVwg8AAHAVwg8AAHAVwg8AAHAVwg8AAHAVx3/UHUgkw4jPGABA+iD8wLU6dcqRz2emugwAQJIRfuBKhiH5fKZmV22QP9Dyndobdcj16aarBiWpMiD1ot3b2R7uEg93IvzA1fwBS/6GyOEnI8DeIbhHW/aINjRYOniwLsEVAfFH+AEASGrbHtHMDFMzK4fIMNgDhPRD+AEAF2jLyf3R7BEF0hnhBwDaMdNjKGiFVFjYIdWlAI5B+AGAdsw0PfKaHk7uB05A+AEAF+DkfuBzXOEZAAC4CuEHAAC4CuEHAAC4Cuf8AADQAq503X4RfgAA+AKudN2+EX4QV054p8Sd2gFncsL2IRpc6br9I/wgbpzwTok7tQPO5ITtQ1txpev2i/CDuHDCOyXu1A44kxO2D8CJCD+IKye8U+JiboAzOWH7AEh81B0AALgMe35cygknHralBk5iBpyJ3822c8L21+0IPy6U6hMP23qX6WAwJK+XnZSAk3C3+NikevuLYwg/LhPriYfxFMtdpjmJGXAW7hbfdpz47RyEH5dywomHbTkxmZOYAWdK1O9mpDddJ85razBwwmE6J2x/3Y7wAwBwjNYOp+Xn54b93JZDQ1wHDI0IP2jVF98FtfSuiBMaAcTDyQ6nGYYh02vKClqyj+/uaTw05PG0vgeI64DhRIQfnFRL78C++K4LABLhi4eGDMOQ15aCJ4SfWE665hA6JMIPIjjxHVigIdTsXdeJeKcEINk46RqxIvw4nBOuB+EPWAoEQ83edZ2Id0oAUoW9OeFa+7vBp8cIP47G9SAAANE4rUOWpOhOTeDvBeEnJaL9qGVbrwcR7Ul/AID4StRH6KP+e+E1deeKLao7Gmhx73yjtvy9kKK/wn7j2HTRLsJPKBTSAw88oNWrV+vf//63ysrK9LOf/Uxf+cpXUl1aM239qGU0u3O50ioApEaitr8xnczdcOzvRaTwk8gr7KfTHqV2EX4WL16sxx9/XPPmzVOXLl00f/58VVZWav369crIyEh1eU0S9VFLTvoDgNRI1PbXSY8b7yMQUur3EqV9+AkEAlq+fLmmTp2q4cOHS5LuvfdeDRs2TC+++KJGjBiR2gJbkKiT8zjpDwBSI9226/G+wn5b9yilei9R2oefnTt36siRIxoyZEjTtLy8PPXq1UtbtmxxZPgBAKA9acseJSfct8ywIx0cTAMvvviibrjhBr311lvKyspqmn7jjTeqvr5eS5YsafNj2ratUCgxbTFNj2pq69Xao3sMqVOHLEeNNaSTLuPEepM91tCxQ5vpUm+yx57s9ePUepM/1lCnDplpVG/yx37xNeT0epM+9t/1rYYJJ9RrSMrPy5JlhVoZ2TYejyEjyrOz0z78PP3005o2bZp27Nghj+fzk7KmTZum6upqrVixInXFAQAAx4nuFG4Ha9zbEwgEwqb7/X5lZ2enoiQAAOBgaR9+unbtKkmqrq4Om15dXa2ioqJUlAQAABws7cNPz549ddppp2nTpk1N02pra7V9+3aVlZWlsDIAAOBEaf9pr4yMDI0ePVoLFixQQUGBvvzlL2v+/Pnq0qWLLrroolSXBwAAHCbtw48kTZkyRcFgUDNmzFB9fb3Kysq0bNky+Xy+VJcGAAAcJu0/7QUAANAWaX/ODwAAQFsQfgAAgKsQfgAAgKsQfgAAgKsQfgAAgKsQfgAAgKsQfgAAgKsQflwqFArp/vvv17Bhw9S3b19NmDBBH374YVTLPvPMMzr77LP10UcfhU3ftm2bRo0apZKSEn3zm9/U/fffr1AolIjyEy4R/Xnuuec0YsQI9enTRxdffLHWrVuXgMqTo639aezJF79O7NHvfvc7XXzxxSopKdH3vvc9bdiwIRmrkhDx7k8oFFJVVZX+4z/+Q3379tUll1yi1atXJ2t14i4Rr59GgUBAl156qW6++eZErkJCJaI/7Wn7HBc2XGnhwoX2oEGD7FdeecXesWOHPX78ePuiiy6y/X5/xOU++ugju3///nZxcbH94YcfNk1/77337D59+tgzZ860d+/ebf/+97+3S0tL7aVLlyZ6VRIi3v3ZsGGD3atXL/s3v/mN/cEHH9iPPfaY3bNnT/tPf/pTolclIdran7vvvtsePXq0XV1dHfYVDAZt2z7Wn3PPPdf+1a9+Ze/atcueN2+efd5559m7du1K5mrFTbz7s3jxYnvAgAH2c889Z+/Zs8detWqV3atXL3vt2rVJXKv4iXd/TjR79my7uLjYvummmxK9GgkT7/60t+1zPBB+XMjv99ulpaX2ypUrm6YdOnTILikpsdevX3/S5SzLsq+44gp77Nixzf6433TTTfbIkSPtUCjUNO2Xv/ylPWnSpMSsRAIloj9z5syxKyoqwsZ/73vfs2fPnh3/FUiwWPpTWVkZcV3Hjx9v33jjjWHT/vd//9eeOXNmXGpOpkT0Z9iwYfbixYvDpk2fPt2+8sor41N0EiWiP41effVV+xvf+IZ9ySWXpG34SUR/2tP2OV447OVCO3fu1JEjRzRkyJCmaXl5eerVq5e2bNly0uUeeughNTQ0aOLEic3mvfbaaxoxYoQMw2iaNmXKFD344IPxLT4JEtGfwsJCvfvuu9q4caNs29amTZv0z3/+UyUlJQlZh0SKpT9vv/22evTo0eK8UCikv/71r2GPJ0mDBg2K2G+nSkR/7rrrLlVUVIRN93g8qq2tjV/hSRLv/jQ6cOCApk+frtmzZys/Pz+uNSdTIvrTnrbP8UL4caG9e/dKkrp27Ro2vXPnzk3zvmjbtm1avny55s+fL9M0w+YdPnxY//rXv9ShQwfdcsstGjp0qC6++GItXbpUlmUlZiUSKN79kaQxY8Zo2LBhuuqqq3Tuuedq7NixGjdunL773e/GfwUSrK39OXTokPbt26etW7fq0ksv1dChQ3X99ddr9+7dkqTa2lrV1dWpS5cuUT2e08W7Px6PR0OGDAnrzyeffKLnnntOQ4cOTeCaJEa8+9Po1ltv1be+9S2Vl5cnrvgkiHd/2tv2OV4IPy509OhRSVJGRkbY9MzMTPn9/mbj6+rqNHXqVE2dOlXdu3dvNv/w4cOSpLvuuktf+tKX9PDDD6uyslJLlizRwoUL478CCRbv/kjSp59+qpqaGv3sZz/TmjVrdPPNN+uRRx7Rb3/727jXn2ht7c+7774rSbJtW3feeafuu+8++f1+XXnlldq/f7/q6+vb9HhOF+/+fNH+/fs1YcIEFRYW6rrrrkvAGiRWIvqzatUq/fOf/9T06dMTXH3ixbs/7W37HC/eVBeA5MvKypJ07FMRjf+WJL/fr+zs7Gbj58yZo7POOkuXX355i4/n9R57GX3jG9/Q5MmTJUnnnHOODhw4oEWLFunGG28M293qdPHujyTdcMMNGjFihEaNGiXpWH8OHTqk+fPn67LLLpPHkz7vQ9ranwEDBmjDhg3Kz89veh088MADGj58uJ566il9//vfb3q8E53s8Zwu3v259tprm8a+9957uvbaa2VZlh599FHl5eUleG3iL979ueCCCzR//nwtW7ZMOTk5yVmJBIp3fy677DJJ7Wf7HC/ps8VF3DTuTq2urg6bXl1draKiombj16xZo7/85S8qLS1VaWmpJkyYIEkaMWKEHnroIeXn5yszM1PFxcVhy339619XXV2dDhw4kKA1SYx49+fAgQN677331Lt377Dl+vbtq4MHD+rgwYOJWZEEaWt/JKmgoCBsA5udna0zzzxT+/btU6dOnZSTk9Omx3OyePen0RtvvKHLL79c2dnZWrVqlb7yla8koPrEi3d/nn/+eR05ckTjxo1r+h3cunWr1q9fr9LS0sStSILEuz/tbfscL4QfF+rZs6dOO+00bdq0qWlabW2ttm/frrKysmbjX3zxRT377LNat26d1q1bpzlz5kiSli5dqssvv1ymaapfv3566623wpZ7++23lZeXp06dOiV0feIt3v3p2LGjsrOz9fbbb4ct19ifgoKCxK5QnLW1P0888YQGDRqkurq6pmmHDx/W+++/r6997WsyDEP9+vXT5s2bw5bbtGmTBgwYkLgVSZB490c6dk5ZZWWlvv71r2vlypVpGQobxbs/o0eP1gsvvND0+7du3Tqdd955Ki8vT8tracW7P+1t+xw3Kf2sGVLmnnvusQcOHGi/9NJLYdeRCAQCdjAYtKurq+2jR4+2uOzGjRubfZR748aN9jnnnGPff//99p49e+znnnvO7t+/v71w4cJkrVJcxbs/v/jFL+zS0lJ77dq19gcffGCvXbvWLi0ttauqqpK1SnHVlv588skn9oABA+wf/OAH9jvvvGNv27bNvvrqq+0LLrjArq+vt23btv/85z/b55xzjr18+XJ7165d9l133WWXlJSk7XV+4tmfhoYG+8ILL7S//e1v2x988EHYdVw+++yzFK9pbOL9+vmi0aNHp+1H3W07/v1pb9vneCD8uFQwGLTvvvtue/DgwXbfvn3tCRMmNP2x/vDDD+3i4mJ7zZo1LS7b0h932z52jY2Kigr73HPPtYcPH24vWbLEtiwr4euSCPHuTzAYtJcvX25/5zvfsfv06WNfcskl9uOPPx523Y100tb+/P3vf7fHjRtn9+/f3+7Xr599ww032J988knYY65du9a+8MIL7d69e9sVFRX2X/7yl6SuUzzFsz9vvPGGXVxc3OLXt771rZSs36lKxOvnROkefhLRn/a0fY4Hw7ZtO9V7nwAAAJKFc34AAICrEH4AAICrEH4AAICrEH4AAICrEH4AAICrEH4AAICrEH4AAICrEH4AAICrEH4AAICrEH4AAICrEH4AAICr/D9EhVVViVvjKgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGdCAYAAAD0e7I1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvG0lEQVR4nO3dfXhTdZ7//1fS9IYL29TC0DbQQmdXoaACclOLrop0LaDcCLPKXIjoxcLMLKCAF2p3BKXrTNVRqTCVqqugq8isvx9U1F0cKAh6URDKooJawSlSbpLOLNPWor1Jc75/zJd8J0NL0zZpktPn47rOdZFzPvnkfT40p6+efE6OxTAMQwAAACZlDXUBAAAAwUTYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApmYLdQHhwOPx6MyZM4qPj5fFYgl1OQAAwA+GYei7776Tw+GQ1dr2+RvCjqQzZ84oLS0t1GUAAIBOqKqq0oABA9rcTtiRFB8fL+kvg5WQkBDiagAAgD/q6uqUlpbm/T3eFsKO5P3oKiEhgbADAECEaW8KChOUAQCAqRF2AACAqRF2AACAqYU07OzZs0dTpkyRw+GQxWJRSUnJRW2+/PJLTZ06VXa7Xb1799aYMWN08uRJ7/aGhgYtXLhQffr00WWXXaaZM2fK5XJ1414AAIBwFtKwc/78eQ0fPlxFRUWtbv/mm290ww03aMiQIfrwww/12WefacWKFYqLi/O2Wbp0qd599129/fbb2r17t86cOaMZM2Z01y4AAIAwZzEMwwh1EdJfZlJv2bJF06dP966bNWuWoqOj9R//8R+tPqe2tlY/+tGPtHHjRv3kJz+RJH311VfKzMxUWVmZrrvuOr9eu66uTna7XbW1tVyNBQBAhPD393fYztnxeDx6//33deWVVyo3N1f9+vVTVlaWz0dd5eXlam5uVk5OjnfdkCFDlJ6errKyshBUDQAAwk3Yhp3q6mrV19frySef1MSJE/X73/9ed9xxh2bMmKHdu3dLkpxOp2JiYpSYmOjz3OTkZDmdzjb7bmxsVF1dnc8CAADMKWy/VNDj8UiSpk2bpqVLl0qSRowYob1796q4uFg33XRTp/suKCjQqlWrAlInAAAIb2F7Zqdv376y2WwaOnSoz/rMzEzv1VgpKSlqampSTU2NTxuXy6WUlJQ2+87Ly1Ntba13qaqqCnj9AAAgPIRt2ImJidGYMWNUUVHhs/7rr7/WwIEDJUmjRo1SdHS0SktLvdsrKip08uRJZWdnt9l3bGys99YQ3CICAABzC+nHWPX19Tp+/Lj3cWVlpQ4fPqykpCSlp6dr+fLluuuuu3TjjTdq/Pjx2rZtm9599119+OGHkiS73a558+Zp2bJlSkpKUkJCghYvXqzs7Gy/r8QCAADmFtJLzz/88EONHz/+ovVz587Vhg0bJEmvvvqqCgoKdOrUKQ0ePFirVq3StGnTvG0bGhr04IMP6q233lJjY6Nyc3P1wgsvXPJjrL/FpecAAEQef39/h8337IQSYQcIHLfb7b3AoD1Wq1U2W9heJwEgzPn7+5ujDICAcbvdGpA+SK6zp/1qn5zaX6dOniDwAAgqjjAAAsbj8ch19rRmPL9DVlv0pdu6m7X5gRy/zwIBQGcRdgAEnNUWrah2wg4AdJewvfQcAAAgEDizA/RgTCYG0BNw5AJ6KCYTA+gpOGoBPRSTiQH0FIQdoIdjMjEAsyPsAAippqamdtswXwhAV3D0ABASnha3ZI1SfHx8u22ZLwSgKzhyAAgNw5A8Lbpj9XZFxcS02Yz5QgC6irADIKSYMwQg2PhSQQAAYGqEHQAAYGqEHQAAYGqEHQAAYGqEHQAAYGqEHQAAYGqEHQAAYGqEHQAAYGqEHQAAYGqEHQAAYGqEHQAAYGqEHQAAYGqEHQAAYGqEHQAAYGqEHQAAYGqEHQAAYGqEHQAAYGqEHQAAYGqEHQAAYGqEHQAAYGqEHQAAYGqEHQAAYGohDTt79uzRlClT5HA4ZLFYVFJS0mbbn//857JYLCosLPRZf+7cOc2ePVsJCQlKTEzUvHnzVF9fH9zCAQBAxAhp2Dl//ryGDx+uoqKiS7bbsmWL9u3bJ4fDcdG22bNn6+jRo9q+fbvee+897dmzRwsWLAhWyQAAIMLYQvnikyZN0qRJky7Z5vTp01q8eLE++OAD3XbbbT7bvvzyS23btk0HDhzQ6NGjJUlr167V5MmT9cwzz7QajgAAQM8S1nN2PB6P5syZo+XLl2vYsGEXbS8rK1NiYqI36EhSTk6OrFar9u/f32a/jY2Nqqur81kAAIA5hXXYeeqpp2Sz2XT//fe3ut3pdKpfv34+62w2m5KSkuR0Otvst6CgQHa73bukpaUFtG4AABA+wjbslJeX6/nnn9eGDRtksVgC2ndeXp5qa2u9S1VVVUD7BwAA4SNsw85HH32k6upqpaeny2azyWaz6dtvv9WDDz6oQYMGSZJSUlJUXV3t8zy3261z584pJSWlzb5jY2OVkJDgswAAAHMK6QTlS5kzZ45ycnJ81uXm5mrOnDm67777JEnZ2dmqqalReXm5Ro0aJUnauXOnPB6PsrKyur1mAAAQfkIadurr63X8+HHv48rKSh0+fFhJSUlKT09Xnz59fNpHR0crJSVFgwcPliRlZmZq4sSJmj9/voqLi9Xc3KxFixZp1qxZXIkFAAAkhfhjrIMHD2rkyJEaOXKkJGnZsmUaOXKkVq5c6Xcfb775poYMGaIJEyZo8uTJuuGGG/TSSy8Fq2QAABBhQnpm5+abb5ZhGH63P3HixEXrkpKStHHjxgBWBQAAzCRsJygDAAAEAmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYmi3UBQDwj9vtlsfj8aut1WqVzcbbGwAkwg4QEdxutwakD5Lr7Gm/2ien9tepkycIPAAgwg4QETwej1xnT2vG8ztktUVfuq27WZsfyPH7LBAAmB1hB4ggVlu0otoJOwAAX0xQBgAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAApkbYAQAAphbSsLNnzx5NmTJFDodDFotFJSUl3m3Nzc16+OGHdfXVV6t3795yOBy65557dObMGZ8+zp07p9mzZyshIUGJiYmaN2+e6uvru3lPAABAuApp2Dl//ryGDx+uoqKii7Z9//33OnTokFasWKFDhw5p8+bNqqio0NSpU33azZ49W0ePHtX27dv13nvvac+ePVqwYEF37QIAAAhzIb3r+aRJkzRp0qRWt9ntdm3fvt1n3W9/+1uNHTtWJ0+eVHp6ur788ktt27ZNBw4c0OjRoyVJa9eu1eTJk/XMM8/I4XAEfR8AAEB4i6g5O7W1tbJYLEpMTJQklZWVKTEx0Rt0JCknJ0dWq1X79+9vs5/GxkbV1dX5LAAAwJwiJuw0NDTo4Ycf1k9/+lMlJCRIkpxOp/r16+fTzmazKSkpSU6ns82+CgoKZLfbvUtaWlpQawcAAKETEWGnublZd955pwzD0Lp167rcX15enmpra71LVVVVAKoEAADhKKRzdvxxIeh8++232rlzp/esjiSlpKSourrap73b7da5c+eUkpLSZp+xsbGKjY0NWs0AACB8hPWZnQtB59ixY9qxY4f69Onjsz07O1s1NTUqLy/3rtu5c6c8Ho+ysrK6u1wAABCGQnpmp76+XsePH/c+rqys1OHDh5WUlKTU1FT95Cc/0aFDh/Tee++ppaXFOw8nKSlJMTExyszM1MSJEzV//nwVFxerublZixYt0qxZs7gSCwAASApx2Dl48KDGjx/vfbxs2TJJ0ty5c/X4449r69atkqQRI0b4PG/Xrl26+eabJUlvvvmmFi1apAkTJshqtWrmzJlas2ZNt9QPAADCX0jDzs033yzDMNrcfqltFyQlJWnjxo2BLAsAAJhIWM/ZAQAA6CrCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMDXCDgAAMLWQhp09e/ZoypQpcjgcslgsKikp8dluGIZWrlyp1NRU9erVSzk5OTp27JhPm3Pnzmn27NlKSEhQYmKi5s2bp/r6+m7cCwAAEM5CGnbOnz+v4cOHq6ioqNXtTz/9tNasWaPi4mLt379fvXv3Vm5urhoaGrxtZs+eraNHj2r79u167733tGfPHi1YsKC7dgEAAIQ5WyhffNKkSZo0aVKr2wzDUGFhoR599FFNmzZNkvT6668rOTlZJSUlmjVrlr788ktt27ZNBw4c0OjRoyVJa9eu1eTJk/XMM8/I4XB0274AAIDwFLZzdiorK+V0OpWTk+NdZ7fblZWVpbKyMklSWVmZEhMTvUFHknJycmS1WrV///42+25sbFRdXZ3PAgSS2+1WU1OTX4vb7Q51uX7zZ38AINyE9MzOpTidTklScnKyz/rk5GTvNqfTqX79+vlst9lsSkpK8rZpTUFBgVatWhXgioG/cLvdGpA+SK6zp/1qn5zaX6dOnpDNFrZvR3la3JI1SvHx8X61NwwjyBUBgP/C9+gaRHl5eVq2bJn3cV1dndLS0kJYEczE4/HIdfa0Zjy/Q1Zb9KXbupu1+YEceTyebqqukwxD8rTojtXbFRUT02Yzd8P3KnlwkkTWARBGwjbspKSkSJJcLpdSU1O9610ul0aMGOFtU11d7fM8t9utc+fOeZ/fmtjYWMXGxga+aOCvWG3Rimon7ESa9vbJY7L9BWAOYTtnJyMjQykpKSotLfWuq6ur0/79+5WdnS1Jys7OVk1NjcrLy71tdu7cKY/Ho6ysrG6vGQAAhJ+Qntmpr6/X8ePHvY8rKyt1+PBhJSUlKT09XUuWLNETTzyhK664QhkZGVqxYoUcDoemT58uScrMzNTEiRM1f/58FRcXq7m5WYsWLdKsWbO4Egvoodxut18fC1qt1rCeJwUgcEL6Tj948KDGjx/vfXxhHs3cuXO1YcMGPfTQQzp//rwWLFigmpoa3XDDDdq2bZvi4uK8z3nzzTe1aNEiTZgwQVarVTNnztSaNWu6fV8AhF5HJodHwsRwAIER0nf5zTfffMmrNiwWi/Lz85Wfn99mm6SkJG3cuDEY5QGIMP5ODo+YieEAAoI/aQCYjhknhwPovLCdoAwAABAIhB0AAGBqhB0AAGBqhB0AAGBqhB0AAGBqXI0FICL4c0d17roOoDWEHQBhraN3XJe46zoAX4QdAOHNzzuuS9x1HUDrCDsAIoI/XxTIXdcBtIYJygAAwNQIOwAAwNQIOwAAwNQIOwAAwNQ6FXZ+/OMf63//938vWl9TU6Mf//jHXS4KAAAgUDoVdk6cOKGWlpaL1jc2Nur06dNdLgoAACBQOnTp+datW73//uCDD2S3272PW1paVFpaqkGDBgWsOAAAgK7qUNiZPn26JMlisWju3Lk+26KjozVo0CA9++yzASsOAACgqzoUdjwejyQpIyNDBw4cUN++fYNSFAAAQKB06huUKysrA10HAABAUHT6dhGlpaUqLS1VdXW194zPBa+++mqXCwMAAAiEToWdVatWKT8/X6NHj1ZqaqosFkug6wIAAAiIToWd4uJibdiwQXPmzAl0PQAAAAHVqe/ZaWpq0rhx4wJdCwAAQMB1Kuz88z//szZu3BjoWgAAAAKuUx9jNTQ06KWXXtKOHTt0zTXXKDo62mf7c889F5DiAAAAuqpTYeezzz7TiBEjJElHjhzx2cZkZQAAEE46FXZ27doV6DoAAACColNzdgAAACJFp87sjB8//pIfV+3cubPTBQEAAARSp8LOhfk6FzQ3N+vw4cM6cuTIRTcIBQAACKVOhZ3Vq1e3uv7xxx9XfX19lwoCAAAIpIDO2bn77ru5LxYQJpqamtpdAKAn6PSNQFtTVlamuLi4QHYJoIM8LW7JGqX4+Hi/2huGEeSKACC0OhV2ZsyY4fPYMAydPXtWBw8e1IoVKwJSmCS1tLTo8ccf1xtvvCGn0ymHw6F7771Xjz76qHeCtGEYeuyxx/Tyyy+rpqZG119/vdatW6crrrgiYHUAEcUwJE+L7li9XVExMW02czd8r5IHJ0lkHQAm16mwY7fbfR5brVYNHjxY+fn5uvXWWwNSmCQ99dRTWrdunV577TUNGzZMBw8e1H333Se73a77779fkvT0009rzZo1eu2115SRkaEVK1YoNzdXX3zxBWeZ0KNZbdGKskW3ud1ziW0AYCadCjvr168PdB2t2rt3r6ZNm6bbbrtNkjRo0CC99dZb+uSTTyT95axOYWGhHn30UU2bNk2S9Prrrys5OVklJSWaNWtWt9QJAADCV5cmKJeXl+uNN97QG2+8of/5n/8JVE1e48aNU2lpqb7++mtJ0qeffqqPP/5YkyZNkiRVVlbK6XQqJyfH+xy73a6srCyVlZW12W9jY6Pq6up8FgAAYE6dOrNTXV2tWbNm6cMPP1RiYqIkqaamRuPHj9emTZv0ox/9KCDFPfLII6qrq9OQIUMUFRWllpYW/epXv9Ls2bMlSU6nU5KUnJzs87zk5GTvttYUFBRo1apVAakRAACEt06d2Vm8eLG+++47HT16VOfOndO5c+d05MgR1dXVeefSBMJ//ud/6s0339TGjRt16NAhvfbaa3rmmWf02muvdanfvLw81dbWepeqqqoAVQwAAMJNp87sbNu2TTt27FBmZqZ33dChQ1VUVBTQCcrLly/XI4884p17c/XVV+vbb79VQUGB5s6dq5SUFEmSy+VSamqq93kul+uib3n+a7GxsYqNjQ1YnQAAIHx16syOx+NRdPTFV3JER0fL4/F0uagLvv/+e1mtviVGRUV5XyMjI0MpKSkqLS31bq+rq9P+/fuVnZ0dsDoAAEDk6lTYueWWW/TAAw/ozJkz3nWnT5/W0qVLNWHChIAVN2XKFP3qV7/S+++/rxMnTmjLli167rnndMcdd0iSLBaLlixZoieeeEJbt27V559/rnvuuUcOh0PTp08PWB0AACBydepjrN/+9reaOnWqBg0apLS0NElSVVWVrrrqKr3xxhsBK27t2rVasWKF/uVf/kXV1dVyOBz62c9+ppUrV3rbPPTQQzp//rwWLFigmpoa3XDDDdq2bRvfsQMAACR1MuykpaXp0KFD2rFjh7766itJUmZmps8l4IEQHx+vwsJCFRYWttnGYrEoPz9f+fn5AX1tAABgDh36GGvnzp0aOnSo6urqZLFY9I//+I9avHixFi9erDFjxmjYsGH66KOPglUrAABAh3Uo7BQWFmr+/PlKSEi4aJvdbtfPfvYzPffccwErDgAAoKs6FHY+/fRTTZw4sc3tt956q8rLy7tcFAAAQKB0KOy4XK5WLzm/wGaz6Y9//GOXiwIAAAiUDoWd/v3768iRI21u/+yzz3y+3A8AACDUOhR2Jk+erBUrVqihoeGibT/88IMee+wx3X777QErDgAAoKs6dOn5o48+qs2bN+vKK6/UokWLNHjwYEnSV199paKiIrW0tOiXv/xlUAoFAADojA6FneTkZO3du1e/+MUvlJeXJ8MwJP3lu25yc3NVVFR00R3IAQAAQqnDXyo4cOBA/dd//Zf+/Oc/6/jx4zIMQ1dccYUuv/zyYNQHAADQJZ36BmVJuvzyyzVmzJhA1gIAABBwnboRKAAAQKQg7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFMj7AAAAFML+7Bz+vRp3X333erTp4969eqlq6++WgcPHvRuNwxDK1euVGpqqnr16qWcnBwdO3YshBUDAIBwEtZh589//rOuv/56RUdH67//+7/1xRdf6Nlnn9Xll1/ubfP0009rzZo1Ki4u1v79+9W7d2/l5uaqoaEhhJUDAIBwYQt1AZfy1FNPKS0tTevXr/euy8jI8P7bMAwVFhbq0Ucf1bRp0yRJr7/+upKTk1VSUqJZs2Z1e80AACC8hPWZna1bt2r06NH6p3/6J/Xr108jR47Uyy+/7N1eWVkpp9OpnJwc7zq73a6srCyVlZW12W9jY6Pq6up8FgAAYE5hHXb+8Ic/aN26dbriiiv0wQcf6Be/+IXuv/9+vfbaa5Ikp9MpSUpOTvZ5XnJysndbawoKCmS3271LWlpa8HYCAACEVFiHHY/Ho2uvvVa//vWvNXLkSC1YsEDz589XcXFxl/rNy8tTbW2td6mqqgpQxQAAINyEddhJTU3V0KFDfdZlZmbq5MmTkqSUlBRJksvl8mnjcrm821oTGxurhIQEnwUAAJhTWIed66+/XhUVFT7rvv76aw0cOFDSXyYrp6SkqLS01Lu9rq5O+/fvV3Z2drfWCgAAwlNYX421dOlSjRs3Tr/+9a9155136pNPPtFLL72kl156SZJksVi0ZMkSPfHEE7riiiuUkZGhFStWyOFwaPr06aEtHgAAhIWwDjtjxozRli1blJeXp/z8fGVkZKiwsFCzZ8/2tnnooYd0/vx5LViwQDU1Nbrhhhu0bds2xcXFhbByAAAQLsI67EjS7bffrttvv73N7RaLRfn5+crPz+/GqgAAQKQI6zk7AAAAXUXYAQAApkbYAQAApkbYAQAApkbYAQAAphb2V2MBPUFTU1OXtgMA2kbYAULI0+KWrFGKj4/3q71hGEGuCADMh7ADhJJhSJ4W3bF6u6JiYtps5m74XiUPTpLIOiHhdrvl8XjabWe1WmWzcVgFwg3vSiAMWG3RirJFt7ndc4ltCC63260B6YPkOnu63bbJqf116uQJAg8QZnhHAsAleDweuc6e1oznd8h6qUDqbtbmB3L8OgMEoHsRdgDAD+2dfQMQvrj0HAAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmBphBwAAmJot1AUAoeZ2u+XxePxqa7VaZbPxtgGASMJRGz2a2+3WgPRBcp097Vf75NT+OnXyBIEHACIIR2z0aB6PR66zpzXj+R2y2qIv3dbdrM0P5Ph9FggAEB4IO4Akqy1aUe2EHQBAZGKCMgAAMLWICjtPPvmkLBaLlixZ4l3X0NCghQsXqk+fPrrssss0c+ZMuVyu0BUJAADCSsSEnQMHDujFF1/UNddc47N+6dKlevfdd/X2229r9+7dOnPmjGbMmBGiKgEAQLiJiLBTX1+v2bNn6+WXX9bll1/uXV9bW6tXXnlFzz33nG655RaNGjVK69ev1969e7Vv374QVgwAAMJFRISdhQsX6rbbblNOTo7P+vLycjU3N/usHzJkiNLT01VWVtbdZQIAgDAU9ldjbdq0SYcOHdKBAwcu2uZ0OhUTE6PExESf9cnJyXI6nW322djYqMbGRu/jurq6gNULAADCS1if2amqqtIDDzygN998U3FxcQHrt6CgQHa73bukpaUFrG8AABBewjrslJeXq7q6Wtdee61sNptsNpt2796tNWvWyGazKTk5WU1NTaqpqfF5nsvlUkpKSpv95uXlqba21rtUVVUFeU8AhKOmpia/FgCRLaw/xpowYYI+//xzn3X33XefhgwZoocfflhpaWmKjo5WaWmpZs6cKUmqqKjQyZMnlZ2d3Wa/sbGxio2NDWrtAMKXp8UtWaMUHx/v93MMwwhiRQCCKazDTnx8vK666iqfdb1791afPn286+fNm6dly5YpKSlJCQkJWrx4sbKzs3XdddeFomQAkcAwJE+L7li9XVExMZds6m74XiUPTpLIOkDECuuw44/Vq1fLarVq5syZamxsVG5url544YVQlwUgAvhzmxAPtxEBIl7EhZ0PP/zQ53FcXJyKiopUVFQUmoIAAEBYC+sJygAAAF1F2AEAAKZG2AEAAKZG2AEAAKZG2AEAAKZG2AEAAKYWcZeeA0Ckc7vd8ng8frW1Wq2y2ThUA13BOwgAupHb7daA9EFynT3tV/vk1P46dfIEgQfoAt49QAe1d2NIbhyJS/F4PHKdPa0Zz++Qtb1vb3Y3a/MDOX6fBQLQOsIO4KeO3jySG0fiUvy5VQWAwCDsAP7y8+aR3DgSAMILYQfooPb+IufGkQAQXrj0HAAAmBphBwAAmBphBwAAmBpzdgAggPhqAiD8EHYAIAD4agIgfBF2ACAQ+GoCIGwRdgAggPhqAiD8MEEZAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGjcChWm53W55PJ5LtmlqauqmagAAoULYgSm53W4NSB8k19nTfrU3DCPIFQEAQoWwA1PyeDxynT2tGc/vkNUW3WY7d8P3KnlwkkTWAQDTCvs5OwUFBRozZozi4+PVr18/TZ8+XRUVFT5tGhoatHDhQvXp00eXXXaZZs6cKZfLFaKKEU6stmhFXWK5VBACAJhD2Ied3bt3a+HChdq3b5+2b9+u5uZm3XrrrTp//ry3zdKlS/Xuu+/q7bff1u7du3XmzBnNmDEjhFUDQPdyu91qamrya3G73aEuF+hWYf8x1rZt23web9iwQf369VN5ebluvPFG1dbW6pVXXtHGjRt1yy23SJLWr1+vzMxM7du3T9ddd10oygaAbtPROWrJqf116uQJ2Wxh/ysACIiI+0mvra2VJCUlJUmSysvL1dzcrJycHG+bIUOGKD09XWVlZa2GncbGRjU2Nnof19XVBblqAAgef+eoSZLH3azND+S0e6UiYCZh/zHWX/N4PFqyZImuv/56XXXVVZIkp9OpmJgYJSYm+rRNTk6W0+lstZ+CggLZ7XbvkpaWFuzSASDo2pujxjw19FQRFXYWLlyoI0eOaNOmTV3qJy8vT7W1td6lqqoqQBUCAIBwEzEfYy1atEjvvfee9uzZowEDBnjXp6SkqKmpSTU1NT5nd1wul1JSUlrtKzY2VrGxscEuGQAAhIGwP7NjGIYWLVqkLVu2aOfOncrIyPDZPmrUKEVHR6u0tNS7rqKiQidPnlR2dnZ3lwsAAMJM2J/ZWbhwoTZu3Kh33nlH8fHx3nk4drtdvXr1kt1u17x587Rs2TIlJSUpISFBixcvVnZ2NldiAQCA8A8769atkyTdfPPNPuvXr1+ve++9V5K0evVqWa1WzZw5U42NjcrNzdULL7zQzZUCAIBwFPZhx597FsXFxamoqEhFRUXdUBEAAIgkYT9nBwAAoCsIOwAAwNQIOwAAwNQIOwAAwNTCfoIy8Nfcbrdf9/RpamrqhmoAAJGAsIOI0dE7O0v+Xc0HADA3wg4iRkfu7Oxu+F4lD06SyDoA0OMRdhBxLtzZ+VI83NkZAPB/EXYQFvyZi8M8HABAZxB2EHIdnYvDPBwAQEcQdhBy/s7FYR4OAKAzCDsIG+3NxWEeDgCgM/hSQQAAYGqc2QEAtMrfL/GUJKvVKpuNXykIT/xkAgAu0tELB5JT++vUyRMEHoQlfioBABfpyJd4etzN2vxAjt9ngYDuRtgBALTJny/xBMIdE5QBAICpEXYAAICp8TEWACAg/LmlC1dtIRT4iQMAdImnxS1ZoxQfH99uW67aQijw0wYA6BrDkDwtumP1dkXFxLTZjKu2ECqEHQBAQHDlFsIVE5QBAICpcWYHABDRuK0F2sP/OAAgYnFbC/iD/22T8/cvno78tROMPgG0rb1Luv255Ls7+gzUa1/gzzGE21rAH/wmMrGO/MXj7187wegTQOs6ckm3JBmGEZI+/dXR1+7IMYTJ0bgUfguZmL9/8XTkr51g9AmgDX5e0u1u+F4lD06S/MklwejTX36+tsQxBIFF2OkBgvEXD39FAd2nvfebpxPvxWD0GajXBgKNS88BAICpcWYHXv5MGuzopMVg9Amg5wjlRGqYB2EHHZ40KLU/aTEYfQLoOUI5kRrmQ9gJso582ZXH45HV2v4niwG/pLsDkwb9nrQYjD4B9BxBnEgd6Luz+3uc9/cY39HXR/tMM5JFRUX6zW9+I6fTqeHDh2vt2rUaO3ZsSGvq6JddWW0x8rjbfxMG65JufyYNdnTSYjD6BNBzBHIidTDuzt6R47y/x/iOvD78Y4pR/N3vfqdly5apuLhYWVlZKiwsVG5urioqKtSvX7+Q1dWRL7u68NcJdw0GgCDp4N3ZGxoaFNPOmemmpia/jvP+HuP/+vUDfZzvyV8ya4qw89xzz2n+/Pm67777JEnFxcV6//339eqrr+qRRx4JcXUdO7vBJZkAEFztni3qxJxDS5TNrzNQoTrG9/QvmY34sNPU1KTy8nLl5eV511mtVuXk5KisrKzV5zQ2NqqxsdH7uLa2VpJUV1cX8NokqbG+Rtaods7sNH7vbeuOvsRfHC3NkqQ//elPfv3F4c/r+/vaHWlLn/RJn+H32vTZgT49LZr8xP+nqOj2jt0N+u+Vd6nxu8DV2ZHjvL8unIG67df/v6xRbf/q97S49f6/zlR1dbXfZ7X87bOmpiZg+3PBhd/b7U5QNyLc6dOnDUnG3r17fdYvX77cGDt2bKvPeeyxxwz9ZTobCwsLCwsLS4QvVVVVl8wKEX9mpzPy8vK0bNky72OPx6Nz586pT58+slgsIaws+Orq6pSWlqaqqiolJCSEupywwbhcjDG5GGPSOsblYoxJ6wI9LoZh6LvvvpPD4bhku4gPO3379lVUVJRcLpfPepfLpZSUlFafExsbq9jYWJ91iYmJwSoxLCUkJPAGbAXjcjHG5GKMSesYl4sxJq0L5LjY7fZ220T87SJiYmI0atQolZaWetd5PB6VlpYqOzs7hJUBAIBwEPFndiRp2bJlmjt3rkaPHq2xY8eqsLBQ58+f916dBQAAei5ThJ277rpLf/zjH7Vy5Uo5nU6NGDFC27ZtU3JycqhLCzuxsbF67LHHLvoYr6djXC7GmFyMMWkd43IxxqR1oRoXi2FwQxEAAGBeET9nBwAA4FIIOwAAwNQIOwAAwNQIOwAAwNQIOyZQVFSkQYMGKS4uTllZWfrkk0/8et6mTZtksVg0ffr0i7Z9+eWXmjp1qux2u3r37q0xY8bo5MmTAa48eAI9JvX19Vq0aJEGDBigXr16aejQoSouLg5C5cHVkXHZsGGDLBaLzxIXF+fTxjAMrVy5UqmpqerVq5dycnJ07NixYO9GQAVyTJqbm/Xwww/r6quvVu/eveVwOHTPPffozJkz3bErARPon5O/9vOf/1wWi0WFhYVBqDy4gjEuPelY68+YBO1YG5AbVCFkNm3aZMTExBivvvqqcfToUWP+/PlGYmKi4XK5Lvm8yspKo3///sY//MM/GNOmTfPZdvz4cSMpKclYvny5cejQIeP48ePGO++8026f4SIYYzJ//nzj7/7u74xdu3YZlZWVxosvvmhERUUZ77zzThD3JLA6Oi7r1683EhISjLNnz3oXp9Pp0+bJJ5807Ha7UVJSYnz66afG1KlTjYyMDOOHH37ojl3qskCPSU1NjZGTk2P87ne/M7766iujrKzMGDt2rDFq1Kju2qUuC8bPyQWbN282hg8fbjgcDmP16tVB3IvAC8a49LRjrT9jEqxjLWEnwo0dO9ZYuHCh93FLS4vhcDiMgoKCNp/jdruNcePGGf/+7/9uzJ0796Jf7HfddZdx9913B6vkoAvGmAwbNszIz8/3WXfttdcav/zlLwNaezB1dFzWr19v2O32NvvzeDxGSkqK8Zvf/Ma7rqamxoiNjTXeeuutgNUdTIEek9Z88sknhiTj22+/7Uqp3SZYY3Lq1Cmjf//+xpEjR4yBAwdGXNgJxrj0tGOtP2MSrGMtH2NFsKamJpWXlysnJ8e7zmq1KicnR2VlZW0+Lz8/X/369dO8efMu2ubxePT+++/ryiuvVG5urvr166esrCyVlJQEYxcCLhhjIknjxo3T1q1bdfr0aRmGoV27dunrr7/WrbfeGvB9CIbOjkt9fb0GDhyotLQ0TZs2TUePHvVuq6yslNPp9OnTbrcrKyvrkn2Gi2CMSWtqa2tlsVgi4v57wRoTj8ejOXPmaPny5Ro2bFjQ6g+WYIxLTz3WtvezEqxjLWEngv3pT39SS0vLRd8UnZycLKfT2epzPv74Y73yyit6+eWXW91eXV2t+vp6Pfnkk5o4caJ+//vf64477tCMGTO0e/fugO9DoAVjTCRp7dq1Gjp0qAYMGKCYmBhNnDhRRUVFuvHGGwNaf7B0ZlwGDx6sV199Ve+8847eeOMNeTwejRs3TqdOnZIk7/M60mc4CcaY/K2GhgY9/PDD+ulPfxoRN4MM1pg89dRTstlsuv/++4Naf7AEY1x64rHWn5+VYB1rTXG7CPjnu+++05w5c/Tyyy+rb9++rbbxeDySpGnTpmnp0qWSpBEjRmjv3r0qLi7WTTfd1G31dgd/xkT6yxtw37592rp1qwYOHKg9e/Zo4cKFcjgcPn/ZmEl2drbPzXTHjRunzMxMvfjii/q3f/u3EFYWOh0Zk+bmZt15550yDEPr1q3r7lK7TXtjUl5erueff16HDh2SxWIJYaXdq71x6WnHWsm/90+wjrWEnQjWt29fRUVFyeVy+ax3uVxKSUm5qP0333yjEydOaMqUKd51F95wNptNFRUVSktLk81m09ChQ32em5mZqY8//jgIexFYwRgTh8Ohf/3Xf9WWLVt02223SZKuueYaHT58WM8880xEhJ2OjktroqOjNXLkSB0/flySvM9zuVxKTU316XPEiBGBKTyIgjEmF1wIOt9++6127twZEWd1pOCMyUcffaTq6mqlp6d727S0tOjBBx9UYWGhTpw4EbD6gyUY49K3b98edaxtzd+OyQ8//BC0Yy0fY0WwmJgYjRo1SqWlpd51Ho9HpaWlPun5giFDhujzzz/X4cOHvcvUqVM1fvx4HT58WGlpaYqJidGYMWNUUVHh89yvv/5aAwcODPo+dVUwxqS5uVnNzc2yWn3fLlFRUd5gFO46Oi6taWlp0eeff+4NNhkZGUpJSfHps66uTvv37/e7z1AKxphI/y/oHDt2TDt27FCfPn0CXnuwBGNM5syZo88++8znPeZwOLR8+XJ98MEHQdmPQAvGuPS0Y21r/nZMgnqs7dL0ZoTcpk2bjNjYWGPDhg3GF198YSxYsMBITEz0Xs43Z84c45FHHmnz+a1debR582YjOjraeOmll4xjx44Za9euNaKiooyPPvoomLsSMMEYk5tuuskYNmyYsWvXLuMPf/iDsX79eiMuLs544YUXgrkrAdXRcVm1apXxwQcfGN98841RXl5uzJo1y4iLizOOHj3qbfPkk08aiYmJxjvvvGN89tlnxrRp0yLu0vNAjklTU5MxdepUY8CAAcbhw4d9LrFtbGwMyT52VDB+Tv5WJF6NFYxx6WnHWn/GJFjHWsKOCaxdu9ZIT083YmJijLFjxxr79u3zbrvpppuMuXPntvnc1n6xG4ZhvPLKK8bf//3fG3Fxccbw4cONkpKSIFQePIEek7Nnzxr33nuv4XA4jLi4OGPw4MHGs88+a3g8niDtQXB0ZFyWLFnibZucnGxMnjzZOHTokE9/Ho/HWLFihZGcnGzExsYaEyZMMCoqKrprdwIikGNSWVlpSGp12bVrVzfuVdcE+ufkb0Vi2DGM4IxLTzrW+jMmwTrWWgzDMLp2bggAACB8MWcHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACYGmEHAACY2v8BhR7/yS8uE2gAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -5798,7 +5689,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 24, "id": "316a2ba1-88c1-46e0-a1a8-15c9b4eb2257", "metadata": {}, "outputs": [ @@ -5830,27 +5721,27 @@ " \n", " \n", " 0\n", - " 0.487488\n", - " 1\n", + " 0.500000\n", + " 0\n", " \n", " \n", " 1\n", - " 0.515711\n", + " 0.507764\n", " 0\n", " \n", " \n", " 2\n", - " 0.505362\n", + " 0.500000\n", " 1\n", " \n", " \n", " 3\n", - " 0.498199\n", + " 0.502003\n", " 1\n", " \n", " \n", " 4\n", - " 0.528175\n", + " 0.513667\n", " 1\n", " \n", " \n", @@ -5859,14 +5750,14 @@ ], "text/plain": [ " score label\n", - "0 0.487488 1\n", - "1 0.515711 0\n", - "2 0.505362 1\n", - "3 0.498199 1\n", - "4 0.528175 1" + "0 0.500000 0\n", + "1 0.507764 0\n", + "2 0.500000 1\n", + "3 0.502003 1\n", + "4 0.513667 1" ] }, - "execution_count": 28, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -5878,23 +5769,23 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 28, "id": "7e5a8b14-8255-4cb8-8a04-e0b4ed23b1d0", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(0.44694844033417297, 0.5718849717242209)" + "(0.4493771957840945, 0.5792838874680307)" ] }, - "execution_count": 29, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAG6CAYAAADu0oe7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABbGklEQVR4nO3dd3hUdeI18HOnJ5lJ7wWSAOmQBAhNOohKEUVwQUHFBbGyFnTx1eWnq7sWVFZlwYqsi4grCEpTxLIqSgkqghTpNb1PMpl27/tHIEsMJZl2Zybn8zwI3rnl3C+BHG4VJEmSQEREROSnFHIHICIiInInlh0iIiLyayw7RERE5NdYdoiIiMivsewQERGRX2PZISIiIr/GskNERER+jWWHiIiI/BrLDhEREfk1ryo7r7/+OqZNm3bJeaqqqvDQQw+hoKAAffr0wZNPPgmTyeShhERERORrVHIHOOe9997DP/7xD/Tu3fuS882ePRsmkwlLly5FbW0tHnvsMTQ0NOC5557zUFIiIiLyJbKXnZKSEvzf//0ftm3bhuTk5EvO+9NPP2H79u3YsGEDunTpAgD461//ihkzZuDBBx9ETEyMBxITERGRL5H9NNavv/4KtVqNTz75BLm5uZect7CwEFFRUc1FBwD69OkDQRCwc+dOd0clIiIiHyT7kZ3hw4dj+PDhbZq3pKQEcXFxLaZpNBqEhoaiqKjIHfGIiIjIx8ledtrDZDJBo9G0mq7VamE2mx1eryhKaGi0OhONiIiIPChQp4ZCIbRpXp8qOzqdDhaLpdV0s9mMwMBAh9dbVdeI5/61w5lo3kMAVEolbHY7IMkdxsdw7JzD8XMcx845HD/H+ejYKRQCHru9LwyBrQ+AXIhPlZ3Y2Fhs3ry5xTSLxYLq6mpER0c7tW5J8qHf5UsQcLblSv6zT57CsXMOx89xHDvncPwc52tjF6hToX+PBFyRG9/mogN4wQXK7VFQUIDi4mIcP368edr27dsBAL169ZIrFhEREbmRQiFgcH4i/t/0fhjVtzO0lhrYTXVtXt6rj+zY7XZUVlbCYDBAp9MhNzcXPXv2xAMPPIAnnngCDQ0NmDdvHq677jredk5EROSHUhJCcOPIdESE6GCtLkXRl8thqylH/KSHoGzjOrz6yE5RUREGDhyIDRs2AAAEQcDChQuRmJiIW2+9Fffffz8GDx6MJ554Qt6gRERE5HLDenfCnTfkIjRAQNnXH6Bo9Suw1ZS3ez2C5Asn6dysosaEZ5dulzuGSwiCAJVKCZvN7hPnX70Jx845HD/Hceyc01HGT6UEAtQC0LYbkNpEEITmC5S9aew0aiWuHZKGrNQoNJYcR8nGJYBoazFP/KSHoDaEt2l9Xn0ai4iIiICsRDVSY7VQtvFW6zYTmi5SliB5zd1YgiDAEKSGZCrDkR9/g+LnDU73O5YdIiIiL5aVqEZ6YgACA0MgKNWuPLCDs23nbNGRv+0IgoDwkAAoFYCppgK19UpootMRWHrAqfWy7BAREXkplRJIjdUiMDAESrXjz5O7OAGCAEheUHYUCgWiwwOgVChgq6tAgAKQggyoi0iGrvwwFL87jdWudbswJxEREblQgFqAUiFAUKrljuJWgiAgKuxs0akth2hpBAColQpAoYSk0jm1fpYdIiIibyW0+MlvhYfooFIqYKurhGht/fonyckBYNkhIiIi2YQYtAjQqiCa6iBaTG7ZBssOERERySIwQA1DoAai2QRbQ63btsOyQ0RE5Kcmjh+CD95/x+3LXMjCl5/BXTP/cNHPVSoFwgw6SHYbrHWVTm/vUlh2iIiIyLPO3mIOSLA68ETk9mLZISIiIo8K0WugVilgN1ZDEu1u3x6fs0NERNRBHDt2GP95/x3s3/sL6uuNCAkJQ78BQ3DzLXdCq9U0z2dqqMfLLz2NHdu+g0arxRUDh2PqrbOg1f7vFvDt277Dyg/exckTRxEUpMeAgcNw07SZ0OkCLplBq1GdvU6nEXZzg9v29XwsO0RERF5OoVBAH9R01xIgQRQl2EUJ9SYrLNa2HRmpqqzAvEfvQ7e0LNzzp0ehVqnx04/bsPbj/yAsLALXT7y5ed4N6z5Cz9798OAjT+D0qRN4f9lbqCgvxSP/728AgG//+zlefulpDBpyJaZM/SNKS4rx/rI3cfLEMcz764sQhAvfKy4IAsKDdZBE0e3X6ZyPZYeIiMhLhei1MARpEBUWALVaA4h2ABKgVACCgKAANcwWO2rrLTBbLv2E4ePHjyA5pSvm/PmvCAhsehpzj7wC7Pq5EL/u+blF2UlM6oxHHn0aCoUCPXv1g0KhwDtvvYoTx48gqVMKlv3rdeT17IM/Pfh48zJx8Yn467wH8ePOrejVu/+F98eghUIhnH1zueee2MyyQ0RE5IWyUiIwYWgyTp08DtFsgtVYCUkUz5tDgCowGJqAIESFBaC23oJaY+sH8p2Tl1+AvPwC2Gw2nDxxDMVFp3Hi+BHU1lTDYAhpMW//K4ZCofjfZb19+w3GO2+9ir2/7oJSqURFRRkmTJoKu/1/BSs7JxeBgUH45efCC5YdrUYFfYAadrMJos3i+MA4gGWHiIjIy4zql4wr+3ZGXWUF7PW1sCkVUCuVv5tLgq2hBmiogTo4AsFBTU8hrqxtPPeyqxZEUcTyf7+JTzesRmOjCZGR0ejaLRMajabprefnCQ0Lb/H/IaGhAIB6oxF1dU3Pw3nztQV487UFrbZTWdn67qrzT1/Z6qraMRKuwbJDRETkRYYXdMKVfTvDdPoQSr9eBanrwMsuY62tgCooBAE6PaLCAlBeZYL0u8KzetV7WPfJf3DHXQ+hb//BCArSAxAwd84drdZnrKtr8f/VVU3X1wSHhp5dDph2213Izslrtaxeb2g1LUR/9vRVbQXkeOEobz0nIiLyEvnp0bhmQAoai46g9LN3AIiXXeYcW30N7MYqaFRKRIS0fnHm/n27kZiUjOEjRzcXloqKMpw4fuR3p8eAn3ZubfH/3337JQRBQE5OPuITOiEkJAylJUXo2i2j+UdERBTee/cNHD1ysMWyGrUS+kA1JGvjBd975Qk8skNEROQFUhJC8Icr02GprUDJxrcdWofd3AAolNAFBSMsuGXh6dotE6v+8y5Wr3wPaRnZKC46jY9WLoPVaoXZ3Nhi3kMH92Pxq89j4JCROPTbPnzw/jsYPnI04uITAQBTps7AG4tfhEKhQO8+A1Bfb8TKD95FZUUZUrumt1hXWLAOkiTBWuu5u69+j2WHiIhIZoZADaaPy4FkNaNozUKn1mU31UFQKhEUENRi+oSJN6Outgbr163Ehx/8C5FRMRg8dBQUCgU++nAZ6o11CDp7CmrS5Ntw+OB+PPPUXAQGBWH8hCm4cfKtzesaOWosAgMDseajFdi8aR10ugCkZ+bgTw8+jpiYuOb5FAKgVinOXqfj+dNX5wjS70/qdUAVNSY8u3S73DFcQhAEqFRK2Gz2Vudr6dI4ds7h+DmOY+ccfxi/28fnIC0pDMWr/3H2upYmNq0exq6DER4SfoELlC9NHRwJhUaL8moTGs0Xuy1dgCCcu57ZtWOnUikQEx4EyW6BtbrMoXVY7XZU1lRCf+gbqMzGFp/FT3oIakP4RZZsidfsEBERyahXZgwykyNQ9+u3LYqOs6y15ZBEO8JDAqBUev7bfZih6TSaK/fJUSw7REREMgkO0uC6oV1hqatETeEml6/fWl0GARIiQwOAizzV2B2CAjXQapSwN9S0uvhZDiw7REREMpk4Mg1qpYCyjUvcsn5JtMNWVwWVUoEwg9Yt2/g9pVKBUL0Wkt0Gu8l4+QU8gGWHiIhIBmmdw5GZHAHjr9/DZnTfg/ZEiwmiuR5BAWoEBajdtp1zzpUqa03rhwvKhWWHiIjIwwQBGDcoFTZzI6oLP3X79mzGakh2G0INOqjV7bvQuT2CAtTQaVUQTXWQxLa9oNQTWHaIiIg8rFdmLGIjglC9fYPHttl0R5SEiJCAi76V3BkqlRKhBh0kmxW2hlqXr98ZLDtEREQepFIqcM2AFFiN1ag/uNNj25UkEbbaCigVAsIv8IRlpwjC2ac2S151+uoclh0iIiIPGtwzEfpANSq+WenxbYtWM0RTHQK0KoToXXfBcqheC9XZhwdKkvx3X/0en6BMRETkIVq1EsN6J8FaWQxz8VGn1qVQqaBo54MGAQB2MwS7DqHBOiiUAhrN9nY/VNBuF2G1NZWawAA19IFqiGYTRIup/Xk8gGWHiIjIQ/p1j4NWrUTxd6udWo9CpUJEp2SnHxYYHBzg0HI2u4hDR8uhVCoQdvY6HWudfO++uhyWHSIiIg9QKgQM6ZkEW20FLBWnnVqXQqmEUqnAe+t3o7Sy3uH1CEo1IAiw2e0QxbYd2YmNCMItY7Kh1aoREqQBJBGWNr4OQhRFLH3/faz/bBOM9fXIzcnBA3fdibjYWIf3oS1YdoiIiDwgPyMGhiANSj933R1YpZX1OF1a59Q6BJWmqfDYRNjb8bTjMIMWoijCWlWCtp4Ce3fFB1izfgMefeB+REVE4rV33sGcef+Hpf9cCLXafc8A4gXKREREbiYAGFHQCdb6OphOHpA7TguSzQJIEtQqBVRKBQRc+rb0c6fOBEiwVpW2+YJkq9WKD1avxu1Tb0b/ggJ0TU3B//35EZRVlOO/33/v9H5cCssOERGRm2WlRiAyNAC1P38hd5QLkmwWSKIIpVIBjVpxttD8r/QIEKBUKKBRK6FSNFUHa20FJPFib1Nv7dCRo2gwmdArN7d5mkGvR1qXLti151eX7cuF8DQWERGRmw3tlQSbuRHGAzvkjnJRkt0KiAIEpRpqpQJqJSBJEiQAgtB0vEeSpPMKTtvv3gKAsoqm5+9ER0a2mB4RHo6y8rZd8+MoHtkhIiJyo6jwQCTHh6Dh0I9yR7k8SYJks0C0WZte9yBJECABogjRZmk+AuSIRrMZAFpdm6NRa2CxWJ2Ofik8skNERORG/XLiYLeLqNr5udxR2k4SIdld+3BArUYDoOnaHa32fw80tFgt0Olc/ETn3+GRHSIiIjdRKgUUZMXCVlUE2Cxyx5FVdGQUAKC8suXzeCoqKxEZEe7WbbPsEBERuUn3rlEI0KpQ/aMPHdVxky6pKQgKDMTPu3c3T6szGvHb4cPIzc5x67Z5GouIiMhN+uXEwWZuROOpg25Zf3R4kFvW645tatRqXD92DF5fuhShISGIjY7G4iXvIDoyCkOuGODilC2x7BAREblBRIgOXRJDUbdvm8vXLdrtsNtF3Dymu8vX3RZ2uwjRbm/3crfffDPsdhHPv/IqzBYLcrOzMf+vT0Klcm8dYdkhIiJyg77d42EXRVTv3OTydYs2GypOHHPsRaDnEQBAEJruwmrP9u12iLa2P2PnHKVSiTun34Y7p9/W7mWdwbJDRETkBr3So2GvKYNoaXTL+kWbzaHCcT5Hy46v4QXKRERELtY5LhjBei3q9m+XOwqBZYeIiMjlctOiYbfbYTzAsuMNWHaIiIhcSACQlxYFW3UJ4ODThsm1WHaIiIhcKDkhBIZADYw8heU1WHaIiIhcKK/5FNZOuaPQWSw7RERELiIIQG63KNiqigHwFJa3YNkhIiJykS6JoQgKULvlQYLkOD5nh4iIyEV6dIuC3WZH/UH3n8JSqFQ+91BBubDsEBERuUh2agRsNaVu345CpUJkp85Olx1HiXY7yk8c95nCw7JDRETkAjERQQgO0qJq3y9u35ZCqYRCqUTZl8thrXKyXAlAew7rqMOiETX8JiiUSqfKzrL/fIgdP/6Il599xuF1tBXLDhERkQtkpURAFCXU7vPcLefWqlJYKk47t5J2lh1XWL1+Pd5etgw9srI8sj2WHSIiIhfITAmH2FgPWN3zLix/UF5RgRcW/hM/796NxPh4j22Xd2MRERE5SadRonNsMBqLDssdxasdOHQYarUKSxa+iqz0NI9tl0d2iIiInJTWORwKhYC6vVvljuLVrujbB1f07ePx7fLIDhERkZMyU8Jhs1phKTshdxS6AJYdIiIiJwgAMpMjYK8qljsKXQTLDhERkRMSog0IClDDeORnuaPQRbDsEBEROSEzJRyiKMK4v1DuKHQRvECZiIjICd2SwiA2GgHR808TVodFO78SBx4q6GtkLzuiKGLhwoX48MMPUVdXh4KCAsybNw9JSUkXnL+iogJ///vfsWXLFkiShAEDBmDu3LmIiYnxcHIiIuroVEoBSbEGmE/u8+h2Rbsdot2OqOE3eXS7v9++r5C97CxatAjLly/Hs88+i9jYWMyfPx8zZszA2rVrodFoWs1///33w2az4Z133oEkSXjyySdxzz33YOXKlTKkJyKijqxzXAhUSgUqj7j/FRHnE202lJ847tMvAn30gQecWr49ZC07FosFS5YswZw5czB06FAAwIIFCzBo0CBs2rQJY8eObTF/bW0ttm/fjsWLFyMzMxMAcMcdd+Duu+9GdXU1QkNDPbwHRETUkXVJDIXdLsJ0bK/Hty3abE4XDkfLjq+R9QLl/fv3o76+Hv3792+eFhwcjKysLOzYsaPV/DqdDkFBQVizZg2MRiOMRiM+/vhjpKSkIDg42JPRiYiI0C0pFFKjEYAodxS6BFmP7BQXNz2TIC4ursX06Ojo5s/Op9Fo8Oyzz2LevHno3bs3BEFAdHQ0li1bBoXCud4mCIJTy3sN4X8/C/CTffIUjp1zOH6O49g5R6bxUykVSIoxoPHkXrd9D2lab9NeuXvPvPErTzj7X0EQWo1xe/LKWnZMJhMAtLo2R6vVoqamptX8kiRh3759yM/Px4wZM2C327FgwQLcfffdeP/996HX6x3KIUCASuXceU9vo3LyPG5HxrFzDsfPcRw753h6/FLjQ6BUKtB4fA9UajedKFEp0NR3hKYf7uKt/+AXBAgCoFIpoBIdH2NZy45OpwPQdO3OuV8DgNlsRkBAQKv5N27ciGXLluGrr75qLjavvfYahg0bhpUrV+K2225zKIcECTab71xVfklC0x94m93erlsJCRw7Z3H8HMexc45M45cSHwy7XUT9kb1w12ksmyBCkiTg3A93OHvNjleSJEiSBJtVBKyOj7GsZefc6avS0lJ06tSpeXppaSnS09NbzV9YWIiUlJQWR3BCQkKQkpKC48ePO5VF8tbf6HZqPoQr+c8+eQrHzjkcP8dx7Jwj1/h1SQqB2FgHSXLfP5YFqwkQ7bDYRbccuTr/eI43fuVZ7CIg2iFYTa1+b9uTV9ayk5GRAb1ej23btjWXndraWuzduxdTp05tNX9sbCzWr18Ps9kMrVYLAGhoaMCpU6dw7bXXejQ7ERF1XGqVAknRBjSe+NWt21GINmgqjqFOqQFggFrp2tNl3nw3ltUuoq6+DpqKY1A4+cBGWcuORqPB1KlT8cILLyA8PBwJCQmYP38+YmNjMWrUKNjtdlRWVsJgMECn0+G6667D22+/jfvvvx9/+tOfAAD/+Mc/oNVqMWHCBDl3hYiIOpDkuKbrdeoP73L7tgJKDwAA6iKSAYWrj+4I553F8rK6I9qhqTjWvP/OkP2hgrNnz4bNZsPjjz+OxsZGFBQU4O2334ZarcapU6cwYsQIPPPMM5gwYQKio6OxfPlyzJ8/H7feeisUCgV69+6N5cuXw2AwyL0rRETUQaSee77OCee/EV+OACCw9AB05YchqXSQXHgtsSAIUKkUsNlErzqFKkiAYGt0+ojO/9bnTXsnk4oaE55dul3uGC7R9IWrhM1m96ovXF/AsXMOx89xHDvnyDF+s27IRXK4EqdXPOuR7bmLIAhQqRWwWb2r7LRF/KSHoDaEt2levvWciIioHQQB6BRjgLWySO4o1EYsO0RERO0QExEEjVoJ06mDckehNmLZISIiaofkuGBIkoT6Iz/LHYXaiGWHiIioHTrHBcNutUJsbJA7CrURyw4REVE7pMSFQKyvkjsGtQPLDhERURsFaFWICA2AufiY3FGoHVh2iIiI2qhzXDAAoP7oHpmTUHuw7BAREbVR57gQ2O0izMVH5I5C7cCyQ0RE1EbJ8cGQzPVyx6B2YtkhIiJqAz5M0Hex7BAREbUBHybou1h2iIiI2oAPE/RdLDtERERtkBhtgN1q48MEfRDLDhERURt0ijVAMtXIHYMcwLJDRER0GUqlgOjwQJgrzsgdhRzAskNERHQZ8ZF6KBUKNJ7mxcm+iGWHiIjoMhJjDJAkCabje+WOQg5g2SEiIrqMxGh905vOLY1yRyEHsOwQERFdRqfYYIgNvDjZV7HsEBERXYJKKSA6LBAWXpzss1h2iIiILiE+ygCFQuDFyT6MZYeIiOgSEmP0TU9OPvar3FHIQSw7REREl5AUbYDdagVsFrmjkINYdoiIiC4hKdYAsaFa7hjkBJYdIiKii1ApFYgKDYSl/LTcUcgJLDtEREQXkRCth0IhwHSKFyf7MpYdIiKii0iMbro4ueHEPrmjkBNYdoiIiC4iPkrPi5P9AMsOERHRRSTGGCCZauWOQU5i2SEiIroAhUJATFggLFXFckchJ7HsEBERXUB0eCCUSgUazxyROwo5iWWHiIjoAhKi9QCAhhN7ZU5CzmLZISIiuoCEKD1sNhvEhjq5o5CTWHaIiIguIDHKADTWyx2DXIBlh4iI6ALio4JgrSmTOwa5AMsOERHR74QZtNBqVGgsOSZ3FHIBlh0iIqLfSYg2AABMJ/bLnIRcgWWHiIjodxKi9bDbRVgri+SOQi7AskNERPQ7CVF6SBaT3DHIRVh2iIiIfich2gBbXYXcMchFWHaIiIjOE6hTIThIA0vZSbmjkIuw7BAREZ0nIersxcknD8qchFyFZYeIiOg88dFBEEUJjcWH5Y5CLsKyQ0REdJ74SD1EqwUQRbmjkIuw7BAREZ0nMdoAsaFG7hjkQiw7REREZymVAiJDA2Dh83X8CssOERHRWbERQVAoBDSe4fU6/oRlh4iI6Kz4KD0kSYLp5D65o5ALsewQERGdFR+lh91mh9jYIHcUciGWHSIiorMSovSQzEa5Y5CLsewQERGdFR+ph626TO4Y5GIsO0RERADCDFpoNUqYS0/IHYVcjGWHiIgIQHx002siGk7ulzkJuRrLDhEREZqu17HbRVgrzsgdhVyMZYeIiAhnbzu3Nsodg9xAJXcAIiLyDdERQQCAymoTbHb/e29UQpQe9jpenOyPWHaIiOiidBolembEoF/3eMRFBjVPr6u34IvCE9jy82kZ07mOTqNEqEGLulP+sT/UEssOERFdULekMEwdnYkArQo2kxHVP38Fu8kITXgsdLEpuG5IV3SODcaHmw/AavPtIz3xUU0XJ5vOHJI5CbkDyw4REbUgABjepzNG9esMsdGE4k/ehKWi9RGPsL5jkJvZHwlRerz+0S7U1ls8H9ZFEqKDIEoSTCd/kzsKuQEvUCYiomZKpYBbx2Xj6v7JsBQfw+kPnrlg0QGAqm3rUf7FMkSEaDHlqgwPJ3WthCgDRKsFEG1yRyE3YNkhIiIAgEopYPq4HGQmR6D6569QsvEtQLz06SnTyf2o/WkzuiaFoX+PeA8ldb3EGD3Ehhq5Y5CbsOwQERFUSgWmX9sd3ZLCULPzM9T8uLnNy9b+8g0sVSUYNygVESE6N6Z0D6VSQFRoICwVRXJHITeRveyIoohXXnkFgwYNQl5eHmbOnImTJ09edH6r1YoXX3yxef6pU6di3759HkxMRORflEoBt1+bg66JoajesRG1u79t9zpKNi6BAsDkqzIgCK7P6E5xEXooFAIazxyWOwq5iexlZ9GiRVi+fDmeeuoprFixAqIoYsaMGbBYLnyh2xNPPIGPPvoIf//737Fq1SqEh4dj5syZqKur83ByIiLfp1AIuGV0NrqcLTp1v25xaD1ioxHVhRuQHBeCnhkxLk7pXgnRekiSBNNx/sPZX8ladiwWC5YsWYLZs2dj6NChyMjIwIIFC1BcXIxNmza1mv/kyZNYtWoV/va3v2HQoEHo0qULnn76aWg0GuzZs0eGPSAi8l2CAEy5KgOZKeGo/flLh4vOOca9W2FtMGJEQSf40sGdhCg97DYbREuD3FHITWS99Xz//v2or69H//79m6cFBwcjKysLO3bswNixY1vMv2XLFhgMBgwePLjF/F9++aXTWQRfO+56McL/fhZ86q8bL8Cxcw7Hz3EyjJ0AYOLINOR2i0Ltr1tQu+srl/w9WPvzF4gaMB7ZXSPx6+EK54O2hZPjlxhjABqN/vN9oB3O7XLTz761/+1JK2vZKS4uBgDExcW1mB4dHd382fmOHj2KpKQkbNq0CW+88QZKSkqQlZWFuXPnokuXLg7nECBApVI6vLw3Uin9a388iWPnHI6f4zw1dgKA64Z2Qe/MGDQcLET9z5ugUrvmQL/5yE7Yel2FkQWdceB4tUvW2VaOjJ8gALERQbAWH3TZGPgipcq/913WsmMymQAAGo2mxXStVouamta3ABqNRhw/fhyLFi3CI488guDgYCxevBg33XQTNmzYgIiICIdySJBgs9kdWtbrCE1/4G12OyDJHcbHcOycw/FznAfHTgAwYUQaemfGoP63QlR+/7HLt2H89Tsk9ByJ5DgDDp2sdvn6W3Fi/KLCAqBWKWA8cwQ2q28/BdoRgtBUdOw2EZIf/7mVtezodE23KFosluZfA4DZbEZAQECr+VUqFYxGIxYsWNB8JGfBggUYMmQIVq9ejRkzZjicRfKT3+XmQ7iS/+yTp3DsnMPxc5ynxk6pEDBpZDp6ZkTD+FshKrescct2an7+CvrugzG8oBMOnqhyyzbO58z4JUTpAQANx37toF+3TWMn+eCf2/aklfW41bnTV6WlpS2ml5aWIiam9dX8sbGxUKlULU5Z6XQ6JCUl4dSpU+4NS0Tkw3QaJWZe3wP5GdGo27fVbUXnnIbfdqBrYijiz5YJbxUfrYfNZofN6P5SRvKRtexkZGRAr9dj27ZtzdNqa2uxd+9eFBQUtJq/oKAANpsNu3fvbp7W2NiIkydPonPnzh7JTETka8IMWtw3uSdS4oNRtW0dqrauc/s2q3Zsgt0uok92rNu35YzEaANgqZc7BrmZrGVHo9Fg6tSpeOGFF/DFF19g//79eOCBBxAbG4tRo0bBbrejrKwMjY2NAIDevXtjwIAB+POf/4zCwkIcOnQIjzzyCJRKJcaPHy/nrhAReaXeWbF4aFoBIgxalG3+N4x7t3pmw6INtorT6JURA6XSe+/ySYjSw1pdLncMcjPZL7+ePXs2Jk6ciMcffxxTpkyBUqnE22+/DbVajaKiIgwcOBAbNmxonv/VV19Fnz59cO+992LixIkwGo149913ER4eLuNeEBF5l+AgDW4bl40/XJkOoaEKZ1a+gMZTnn2jd/XPX0CnVSE7NdKj222rEL0WAVoVzKXH5Y5CbiZIvnZFkhtU1Jjw7NLtcsdwCUFouo3eZrP73MVmcuPYOYfjd3kKAQgL1iFQp4ZCITS9osBiR32DFWabCIvF5vTYhRq0GF7QCX2ymk4f1f36LWoKWz+k1VMSbv4LjpSY8ObqX9y2DUe/9rp3jcQtY7JxZs1CWCs75nuxBEGASq2AzSr63J/b+EkPQW1o24EOWe/GIiLyZyqlAunJ4cjpEoHOscEID9ZBqbz4AfXaegvKqhpQWtXQ9HOlCaWV9agxmiFe4vtQeLAOmakRyEqJQJfEUECSYCk6hPLvPoLYIO+rdBpP7EXXrvkI0WtQY7zwa4DkkhQbDLvd3mGLTkfCskNE5GJRYQEYXtAJud2ioFYpYbNaIdZVoPHEYVjKT8NqrAbsNkiiDUqdASpDGDTBYdDoI9A5NASdY6KgUKqgUDRd6yJKEupNVtQaLbDY7LCLEgQ0HcUJCdJCpVJAkiTYzSY0Ht+Dyh/WQmz0jotuq3ZuQmCXfPTOisMX273rdFGnGAMkLxknci+WHSIiF4kOD8RV/ZLRvWskRFGEpfgoKn/9Do2nDl5yuQueSlAooI3qBG1sMtQhkVDrwxAdoIcQoACEpqND9sYqmE9VwVhViroD22Q/inMhYkMd7MZK9MmO9aqyI6DpNRHWkiNyRyEPYNkhInKSUilgREFnDC/oBEgi6g/vQsX3HwM2J07biCLMJcdgLjnmspxyqdu7FeH9xqBzXDCOF9XKHQcAEBkWAK1aiaqiw3JHIQ9g2SEickJSjAFTrspAZGgAzCXHUfL5vwFro9yxvErd/q0IKbgaeWnRXlN2OsUGAwDqj+6+zJzkDxy69bykpMTVOYiIfE7/HvG4Z1IewoJUKPtyOUo2vMmicyGiCFt1CfLSouAtLxZPijHAZrPBbqyWOwp5gENlZ9iwYZgxYwY2bNgAi8W7rq4nInI3lVKByaMyMGFYN9hrSnF6xTMwHd8rdyyvVrdvG/SBGqQmhModBcDZIzsm7zjKRO7nUNl55plnIIoi5syZg4EDB+LJJ59s8QoHIiJ/FRSgxj035iE/vekdU0VrXnXu2pwOov63QthtduSlRcsdBUqFgLjIIJgreMt5R+FQ2Rk/fjyWLFmCr776Crfffju2bt2KSZMmYezYsViyZAnKy/nobSLyPxEhOsye3BNxEUGo+OZDVP6wVu5IPsVWeQa53SKhkPlUVlykHiqlAo2nL32XHPkPp14XERMTgzvvvBMbN27EqlWrEBYWhvnz52Po0KG47777sGvXLlflJCKSVVKMAbMn90RIoApln76NhiP8+629avd+jwCdGl07yft6n6QYAyRJQsPRX2XNQZ7j9LuxCgsL8Ze//AV//OMfsXPnTlxxxRWYO3cuTCYTpkyZgqVLl7ogJhGRfJLjQzDrhlxoFCKKV7/sF7eDy6HhyC+w2WzIT4uSNUdSrAF2qxWipUHWHOQ5Dt16fvz4cXz88cf45JNPcPr0aSQkJGDatGmYMGEC4uLiAABTp07FnDlzsHjxYtx2222uzExE5DFdk8Jw+7U5EGxmFH20wGueTOyrbOWn0L1rIlZ++RvsdnnexdQ5NhhiQ7Us2yZ5OFR2rrrqKmi1WowcORJPPfUU+vfvf8H5UlNTcezYMWfyERHJJr1zOKaPy4ZkMaFo1UsQLbyt3Fm1v25B9IibkdYpHPuOVnh8+2qVApFhAWg4dMDj2yb5OFR2/vKXv+Daa6+FwWC45Hx333037r77boeCERHJKe1c0THX4/TKl3jHlYuYju+FzWpDbrcoWcpOcnwIFIKAhmN7PL5tko9D1+x89tlnKC0tveBn+/fvx7hx45wKRUQkp7ROYZg+LhuiuYFFxw1s5SeR0yUSSqXnb8tKTQiB3S7CdPI3j2+b5NPmIzuFhYXNL6jbvn07duzYgcrKylbzffXVVzh58qTrEhIReVDXpDBMvzYHkrkBZ1a+yKLjBrW/bkH0yBRZTmV1SQiF1GgEIHp0uySvNpedDz/8EB9//DEEQYAgCHjyySdbzXOuDI0dO9Z1CYmIPCQlPgS3X5sDWEw4s2oBi46bmE7sazqVlebZU1lKpYCkWAPMp/Z7bJvkHdpcdh5//HHccMMNkCQJt956K+bNm4euXbu2mEehUCA4OBjdunVzeVAiIndKijFgxnXdm+66WvUPvuPKzZpOZXWCUil47K6spOhgqJQKVB/j83U6mjaXHYPBgD59+gAA3n33XWRnZyMoKMhtwYiIPCUuSo87JvSAQrQ23V7O56+43blTWemdwrHXQ0d3UhNDIIoi6o/y4uSOps1lZ82aNRgyZAjCwsJw5swZnDlz5pLzX3fddc5mIyJyu6jwQNw5oQdUEFG0+mU+R8dDzj+V5bGykxAC0WwCRJtHtkfeo81lZ+7cufjPf/6DsLAwzJ0795LzCoLAskNEXi8sWIe7JuRCowRK1rwKsYFvwfYkW/lJZHfpBJVSgM3Np7IEoem2c2vJEbduh7xTm8vOF198gaioqOZfExH5suAgDe6emIsArQKlaxfDVtf67lJyr5rd3yBm1K3ISI7AnsPufYF0fJQeWrUSFSf2uXU75J3aXHYSEhIu+OtzbDYbjEYjQkNDXRKMiMhdAnUq3HlDLgyBapRueAvWqmK5I3VIjad+g81iQa/MGLeXndSEEIiiBONhvsC1I3LooYI2mw0LFy7E2rVrAQDbtm3DFVdcgf79++PWW29FTU2NS0MSEbmKVqPEHRNyER6sQ/nn/4al7ITckTo0S/ERZCSHQ6dRunU7qQmhTa/74F12HZJDZeeVV17B4sWLUVvbdH776aefRmhoKB599FGcOHECL774oktDEhG5gkqpwB/Hd0dcRCAqvvkPGs8clDtSh1fz05dQKgTkdHXfm9AFNB3ZsVWXuG0b5N0cKjvr16/Hgw8+iJtvvhmHDx/GwYMHcdddd+GWW27BAw88gC+//NLVOYmInKIQgFvGZqFzbDCqfvgEpqO75Y5EACwVp2E3N6JXRrTbtpEYY0CgTo0GPl+nw3Ko7JSWliI3NxcA8PXXX0OhUGDw4MEAgNjYWNTV1bkuIRGRkwQAfxiVgYzO4aj5aTOMB3bIHYnO03hyP1ITQ2EIVLtl/VmpEbCLIur2b3fL+sn7OVR2oqOjcerUKQDAl19+iczMTISHhwMAfvrpJ8TGxrouIRGRk8YN6Yr89GjU7duK2l1fyx2Hfqf6p80QAOSlu+foTnZqJMT6Gj5fpwNzqOyMHTsWzzzzDP74xz9i586duOGGGwAAf/vb3/Dqq6/yredE5DWGF3TCoLwE1B/djaqt6+SOQxdgN1bDZqpDrwzX/0M5RK9FXGQQTLzlvENzqOzcf//9uP322yEIAh566CHcdNNNAIDdu3fj9ttvx1133eXSkEREjuidFYtrBqSgsegoKr7+QO44dAkNh35GQrQecZF6l643OzUCkiShZs93Ll0v+ZY2P2fnfIIgYNasWZg1a1aL6StWrHBJKCIiZ2Umh2PSiDRYqktRsvEtuePQZVT/+AX02QPRv3scPvrKdXfJZXeJhN1sajqNRR2WQ2UHAOrq6rB161Y0NDRAklo/5puviyAiuSTFGDBtTDbsjUYUrfmn3HGoLUQbrGUn0CszCeu+OwyLVXR6lRq1Al0SQtB4kqewOjqHys63336L2bNnw2QyXfBzvhuLiOQSFqzDH8d3hyBaUfTRK7wo1YdU7diI2LF3Ij89Btv2FDm9vvTO4VAqFajb+4ML0pEvc6jsvPjii0hNTcWjjz6KmJgYKBQOXfpDRORSAVoV7ri+B3RqAcUfL4JoaZA7ErWDpewUbKZ6DOgR75Kyk5UaAZvVCnPxURekI1/mUNk5fPgwFi1ahN69e7s6DxGRQ5QKAbdfm4MwgxZlny+Frca971oi96g/sA3x+SOQFGPAyRLHn9mmVAjITomArcr50kS+z6FDMvHx8TAaja7OQkTksIkj0tApLhjVWz+B+cxhueOQg2p2fQ27zY7+3eOdWk9uWjQCdGrU/PyVi5KRL3Oo7MyaNQv//Oc/mx8sSEQkp6G9ktA7Kxb1+7fx6ci+ThRhKT6MnhnRCNFrHF7NwLwEWE0NaDz1mwvDka9y6DTW2rVrUVJSgiuvvBLh4eHQ6XQtPhcEAZs3b3ZJQCKiS8lOjcDoK1LQWHIclT+slTsOuUD5dx8hftIjGNknGau+bH9ZSYoxICnGgGo+LZvOcqjsxMbG8pUQRCS7mIgg3HxNJmwNtShZz2fp+AuxoQ7m07+hT3Y6vio8gcraxnYtf0VuAuw2O2p++sJNCcnXOFR2nnnmGVfnICJqlwCtCrdfmwNBElH08T8BOP9cFvIeFd+sQvyUuRjVPxkrPtvf5uWCAtTIS4uC+cxBQOTXBDVx6p7xw4cP491338ULL7yAkpISFBYW8sJlInI7QQCmjs5CiF6D8s//BbGxXu5I5GKipQGNJ/YiPz0a0eGBbV6ub04cBEHge9CoBYeO7IiiiHnz5mHVqlWQJAmCIOCaa67BokWLcOLECSxbtoynuYjIba7un4JuSaGoLtzEZ6j4sfJvP0JiUhbGDkrFko/3XHb+QJ0Kg/ITYa+rgK2u0gMJyVc4dGRn0aJFWLt2LZ5++mls2bKl+XURDz/8MERRxIIFC1wakojonOzUCAwv6ATTqd9Qu/sbueOQO9ksqNv7HTKTIzC0V9JlZ7/xynQEaJUo40tf6XccKjurVq3C7NmzccMNNyA0NLR5emZmJmbPno0tW7a4Kh8RUbPwYB0mX5UBa0Mtyj5/V+445AE1hZvQWHIC11yRgm6dwi46X9/sWGSlRKBu9zewVpzxYELyBQ6VnfLycmRmZl7ws5iYGNTW1joViojo91RKAbeOy4ZaARSvfU3uOORBJRvfhNjYgGmjsxAWrGv1eUx4IMYMTIGlqhg1Oz+XISF5O4fKTufOnfHf//73gp9t374dnTt3dioUEdHvjR/aDbHhQaj4diXE+hq545AniSJK1i6GRingwZt64ar+KQgKUMMQqMaofsm4a2IuBNGO0g18/ABdmEMXKN96662YN28erFYrhg0bBkEQcPz4cWzbtg1LlizB3LlzXZ2TiDqw3LQo9MuJg/HQTzAd3S13HJKBzViFknWLETFoAob3TsLQXokQBAECAFtNKSq2roFoad/zeKjjcKjsTJo0CZWVlVi8eDGWL18OAHjwwQehVqsxY8YMTJkyxaUhiajjCg/WYdLIdFjrqlHxzUq545CMrJVFKP74n1DpwxDWbywk0Y7KbeshNdRCpXbqSSrk5xwqOwAwc+ZMjBs3Dtu3b4dKpYLBYEBubm6LC5aJiJyhVAiYNiYLKkHCmfWvyx2HvITNWIWyzf9u/n9BEGRMQ76g3WVn3bp1WLFiBXbt2gWbzQYA0Ol06NmzJ6ZMmYKRI0e6PCQRdUxXX5GC+Cg9Kr9dBbGBNz4QkWPaXHbsdjseeughfPrpp4iJicGYMWMQGRkJSZJQXFyM7du347777sP48ePx7LPPujMzEXUA3ZLCMLRnEhpO7Ef9oZ/kjkNEPqzNZWf58uXYtGkTHnvsMUydOrXVYUO73Y4VK1bg73//O3r37o2JEye6PCwRdQyBOhWmXJ0BW2MDyja/J3ccIvJxbb6ia82aNZg8eTKmTZt2wfOjSqUSN998M2688UasXr3apSGJqGO58cp0BOpUKP3sHfAFn0TkrDaXnaNHj2Lw4MGXnW/QoEH47bffnApFRB1X35w4ZKdGom7Pt3wSLhG5RJvLjslkQkhIyGXnCwsLQ30930BMRO0XEaLD+CFdYKkuQ03hJrnjEJGfaHPZkSQJSqXy8itUKJpfDEpE1FaCANx0dSYUAEr4JFwiciE+hYmIvMKw3p2QFGNA9ba1EBuNcschIj/SrufsPPHEE9Dr9Zecx2jkX1JE1D4J0Xpc1S8Z5tITMB7YIXccIvIzbS47BQUFAHDZU1RBQUHo3bu3c6mIqMNQKQXcdHUmRLsVJZ8tlTsOEfmhNpedf//735efiYiona4akILI0ACUf7kcsFnkjkNEfojX7BCRbFLiQzAkPxGNp36D6fheueMQkZ9i2SEiWWjUCky5OgN2ixllXyyTOw4R+THZy44oinjllVcwaNAg5OXlYebMmTh58mSblv3kk0+Qnp6OU6dOuTklEbnauMFdERKkRfkX7wEin5JMRO4je9lZtGgRli9fjqeeegorVqyAKIqYMWMGLJZLn7s/ffo0/vrXv3ooJRG5UnrncPTLiUPD0V9gLj4idxwi8nOylh2LxYIlS5Zg9uzZGDp0KDIyMrBgwQIUFxdj06aLPz1VFEU8/PDDyM7O9mBaInKFAK0KfxiVDpupHhX//Y/ccYioA2jXc3Zcbf/+/aivr0f//v2bpwUHByMrKws7duzA2LFjL7jca6+9BqvVinvvvRdbt251SZYLvdzUJwn/+1mAn+yTp3DsnNPG8bt+WDcE6VQoWfeW//y5c9K5YWj6mWPSXhw/x/ny2LUnraxlp7i4GAAQFxfXYnp0dHTzZ7/3yy+/YMmSJVi5ciVKSkpckkOAAJXq8q/C8CWqNrzagy6MY+ecS41fdmo48tOjUf/bDki1xVCpZT+T7lWUKo6HMzh+jvP3sZO17JhMJgCARqNpMV2r1aKmpqbV/A0NDZgzZw7mzJmD5ORkl5UdCRJsNrtL1iU7oembjc1uB/iKsvbh2DnnMuOnD1RjwrBusNbXomLLx57P58UEoembjd0mgq8WbD+On+M6ytjJWnZ0Oh2Apmt3zv0aAMxmMwICAlrN//TTTyMlJQWTJ092eRZ/eXlp8+kDyX/2yVM4ds653PhNGpkGjUqB4nVvc3xbaRo7iV97DuL4Oc53x649aWUtO+dOX5WWlqJTp07N00tLS5Gent5q/lWrVkGj0SA/Px8AYLc3HY0ZO3Ys7rzzTtx5550eSE1E7VWQHYvM5AhU7/oatppyueMQUQcja9nJyMiAXq/Htm3bmstObW0t9u7di6lTp7aa//d3aO3atQsPP/ww3njjDaSlpXkkMxG1T5hBi+uGdIW1phw1Oz+XOw4RdUCylh2NRoOpU6fihRdeQHh4OBISEjB//nzExsZi1KhRsNvtqKyshMFggE6nQ+fOnVssf+4i5vj4eISGhsqwB0R0KYIA3HRNJpQK4MzGt+WOQ0QdlOyXX8+ePRsTJ07E448/jilTpkCpVOLtt9+GWq1GUVERBg4ciA0bNsgdk4gcMLRXJ3SODUb19g0QG2rljkNEHZQg+doVSW5QUWPCs0u3yx3DJQSh6TZ6m83ucxebyY1j55zfj19CtB73/aEnbOWnULzuNbnjeTVBEKBSK2CzivzacwDHz3G+PHbxkx6C2hDepnllP7JDRP5HpVTg5qszIdmtKP50idxxiKiDY9khIpcbN7gLIkICUPnf/wC2S7/njojI3Vh2iMilMlPCMaBHPBqO7YbpxD654xARsewQkesYAtX4w5XpsDYYUfH1B3LHISICwLJDRC4iAJg0Ig1atRKlG9+UOw4RUTOWHSJyiSG9ktA1KRR1P23mU5KJyKuw7BCR05LjQnB1/2SYy06gdvc3cschImqBZYeInBKgVWHq6EyIVjMqPl8qdxwiolZYdojIKZNHZUAfqEb550sB0SZ3HCKiVlh2iMhhg3smIis1AnW//BeWslNyxyEiuiCWHSJySHJ8CMZckQpz6UnU/LhZ7jhERBfFskNE7RYUoMYtY7IgWs0o3vCW3HGIiC6JZYeI2kUhANNGZyFQq0Lphjd5nQ4ReT2WHSJql2uuSEVqQghqdmyEtapY7jhERJfFskNEbdajWxSG9kqC6eR+1O39Xu44RERtwrJDRG0SExGEyaPSYa2rRtnmZXLHISJqM5YdIrosnUaJ28flQCGJKF77T7njEBG1C8sOEV2SIADTxmQj1KBB2efvQmxskDsSEVG7sOwQ0SVdc0UquiWFombn5zAXH5E7DhFRu7HsENFF5aVHY9jZC5L5gk8i8lUsO0R0QYnRBvxhZDostZW8IJmIfBrLDhG1YghUY/q1OYBoRcknvCCZiHwbyw4RtaBUCph+bXcE6ZQo3fAmREuj3JGIiJzCskNELUwakY6EKD2qtqyGtbJI7jhERE5j2SGiZkN7JaFXZgzq929D/aGf5I5DROQSLDtEBADISonA6CtS0FhyHJVb18odh4jIZVh2iAgxEUG4+ZpM2Ex1KFn/ltxxiIhcimWHqIML1KkwY3wOFBBRvGYhAFHuSERELsWyQ9SBKRUCpo/LgSFQg7JPl0BsrJc7EhGRy7HsEHVgE4Z3Q6e4YFRv/QSWshNyxyEicguWHaIOamBeAvpkx6H+t0IYD+yQOw4Rkduw7BB1QOmdwzFucBeYy06hcssaueMQEbkVyw5RBxMVHohpo7NgN9WjeP3rcschInI7lh2iDiRAq8KM8d2hFEQUf7IQEHnnFRH5P5Ydog5CoRBw27hshARpUP75UogNdXJHIiLyCJYdog5iwrBuSI4PQfX29TAXH5M7DhGRx7DsEHUAg/MT0Tfn7J1X+7bKHYeIyKNYdoj8XGZKBMYOSoW59CTvvCKiDollh8iPJUTrMW100zuvije8IXccIiJZsOwQ+akQvQZ/HN8dgmhH8ZpXeecVEXVYLDtEfkirVmLmdT0QqFGiZP1rEBsb5I5ERCQblh0iP6M8e4t5VFgAKr5+H7aqErkjERHJimWHyI8IACZflYHUxFBUb98I04l9ckciIpIdyw6RHxk3pAtyu0Whbs8W1O39Xu44RERegWWHyE+M6NMZg/ISUX90N6p3bJQ7DhGR12DZIfIDQ3sl4er+yTCdPoSKrz+QOw4RkVdh2SHycYPzEzFmYCoai46i9LN35I5DROR1VHIHICLHDemViLEDu6Cx9ARKNr4ldxwiIq/EskPko8YMTMXQXkloLDmOkvV8OjIR0cWw7BD5GIUATByRjoLsWNQf+xXlXy6XOxIRkVdj2SHyIUEBatwyJhsp8cGo27cNlT98InckIiKvx7JD5COSYgy4bVw2gnRqVG5bB+PerXJHIiLyCSw7RF5OEIDBPRNxTf8USHYrSte9BkvFabljERH5DJYdIi8WFRaAKaMykBhjgKWiCMUb3wasjXLHIiLyKSw7RF4oQKvC8IJOGJSXAEgiKn/4BMb92+WORUTkk1h2iLyIVq1E/x7xGFHQCRq1EpaSYyj7YjlES4Pc0YiIfBbLDpEXCDNoMTA/EX1z4qBRKWCtLkXR1x/AVlUidzQiIp/HskMkE7VKge7dolCQFYsuCSEQJQnW8lMo/mEdL0AmInIhlh0iD1IqBaR3DkdeejRyUiOgVilhazTBePBHVBd+CrGRp6uIiFyNZYfIzQQAyfEh6JkZg7y0KOg0KtisVlhLjqJi11cwFx+TOyIRkV9j2SFyE51GiT7ZcbgiLwHhwTrYbXZYK06hdPe3MJ3YJ3c8IqIOg2WHyMUCdSqM7NsZ/XLioFIqYDNWo2Lr5zDu3Q5AlDseEVGH4xVlRxRFLFy4EB9++CHq6upQUFCAefPmISkp6YLzHzx4EPPnz8euXbugUChQUFCAuXPnIj4+3sPJif5HrVJgcM8kDO+dBJVSgKX0BMq2roO1skjuaEREHZpC7gAAsGjRIixfvhxPPfUUVqxYAVEUMWPGDFgsllbzVlVVYfr06dDpdPj3v/+NN998E5WVlZgxYwbMZrMM6YmAlIQQPHJLAUb16wypphhFH/0DJRveZNEhIvICsh/ZsVgsWLJkCebMmYOhQ4cCABYsWIBBgwZh06ZNGDt2bIv5N2/ejIaGBjz//PPQ6XQAgPnz52Po0KH48ccf0b9/f0/vAnVgKqWAqwakYEh+IuwWM0o3LoG5+IjcsYiI6Dyyl539+/ejvr6+RUkJDg5GVlYWduzY0ars9O/fH4sWLWouOgCgUDQdoKqtrXU4hyAIDi/rVYT//SzAT/bJU9o5dvoANW4fn4P4KD1Mpw6g/MvlgCj6z9dSO53b7aafO+YYOIpj5xyOn+N8eezak1b2slNcXAwAiIuLazE9Ojq6+bPzJSYmIjExscW0N954AzqdDgUFBQ5lECBApVI6tKy3Uin9a388qS1jFx0WgNvGZcMQoEbNlpUwHdsNlRKA0ivODMtKqeIYOIpj5xyOn+P8fexkLzsmkwkAoNFoWkzXarWoqam57PL//ve/sWzZMjz++OMIDw93KIMECTab3aFlvY7Q9M3aZrcDktxhfEwbxy41IQTTx+VAKYgo2/gGLGWnPJfRiwlC01+YdpsIiV977cKxcw7Hz3EdZexkLzvnTkdZLJYWp6bMZjMCAgIuupwkSXj55ZexePFi3HXXXZg2bZpTOSQ/+V1uPv0i+c8+eUpbxq5zXDD+OD4Hgs2MojWvQGyo82BCb9c0fhK/9hzAsXMOx89xvjt27Ukr+3Grc6evSktLW0wvLS1FTEzMBZexWq14+OGH8dprr+HRRx/F/fff7+6YREiI1mPmdT0g2K0o+mgBiw4RkY+QvexkZGRAr9dj27ZtzdNqa2uxd+/ei16D88gjj+DTTz/Fiy++iNtuu81DSakjiwoPxB3X94ASdhSt/gffYUVE5ENkP42l0WgwdepUvPDCCwgPD0dCQgLmz5+P2NhYjBo1Cna7HZWVlTAYDNDpdPjoo4+wYcMGPPLII+jTpw/Kysqa13VuHiJXCtCqMGN8d2iUQMlqnroiIvI1sh/ZAYDZs2dj4sSJePzxxzFlyhQolUq8/fbbUKvVKCoqwsCBA7FhwwYAwLp16wAAzz//PAYOHNjix7l5iFxFIQDTxmQhRK9B+edLYTNWyR2JiIjaSZB87YokN6ioMeHZpdvljuESgtB0G73NZve5i83kdqGxGze4CwblJaB6x0bU7tkic0LvJggCVGoFbFaRX3vtxLFzDsfPcb48dvGTHoLa0La7sL3iyA6RN8pPj8bg/EQ0HP+VRYeIyIex7BBdQHiwDhNHpMFaV4XyL9+XOw4RETmBZYfodxQKAdNGZ0EpAMXrX5c7DhEROYllh+h3RvXtjIRoPap++Jh3XhER+QGWHaLzJMcFY1jvJDSePoT6gzvljkNERC7AskN0llqlwKQR3WC3mFG6+V254xARkYuw7BCddc2AFITotaj4+n1AFOWOQ0RELsKyQwQgJSEEV+TGw3x6P8xnDssdh4iIXIhlhzo8tUqByaMyYLeYUfXtB3LHISIiF2PZoQ5vVL9khOq1qPj6A56+IiLyQyw71KHFR+kxOD8R5jOHYD5zUO44RETkBiw71GEJAnDjlemQ7DaUfrlc7jhEROQmLDvUYQ3MS0B8ZBCqtq0DbBa54xARkZuw7FCHFGrQ4poBKbBUlaD+t0K54xARkRux7FCHNGF4NygEoHTTUrmjEBGRm7HsUIeT0yUSmckRMP66he++IiLqAFh2qEPRqpWYMKwbrPV1qC78TO44RETkASw71KFcPSAFQQFqlPPuKyKiDoNlhzqMpBgDBuTGo/HUAVjKTsgdh4iIPIRlhzoEhULAjVemQ7RZUfbl+3LHISIiD2LZoQ5hSM8kxIQHomrLakC0yR2HiIg8iGWH/F5EiA6j+nWGpfw0Go78InccIiLyMJYd8ns3XpkOQZJQ+tm/5I5CREQyYNkhv9avexxSE0JR+9PnEC0NcschIiIZsOyQ3wozaDFuUBdYqktRu/tbueMQEZFMWHbILwkAJl+VAaUCKPl0idxxiIhIRiw75Jf658Y3nb768XO+EoKIqINj2SG/ExUWgLEDu8BSVcLTV0RExLJD/kWpFDBtdBYUEFGy8S254xARkRdg2SG/MmZgKmIiglDx7UqIjbz7ioiIWHbIj2Qmh2NQXiJMx/fCdHS33HGIiMhLsOyQXwg1aDHlqgxYG4x8ozkREbXAskM+T61S4PZrc6BRKVC6/nW54xARkZdh2SGfd+OV6YgJD0LFN/+Bra5S7jhERORlWHbIpw3tlYS8tGgY930P07E9cschIiIvxLJDPis3LQqjr0hBY+kJVG3bIHccIiLyUiw75JO6JoViyqgMWI1VKFn3ptxxiIjIi7HskM+Jj9Jj+rgcSBYTila/CkCUOxIREXkxlh3yKXGResya0AMKyY6i1S8DNovckYiIyMup5A5A1FbxUXrceUMu1AoRJatfgdhYL3ckIiLyASw75BMSow2YNaEHVIKI4tUvw26sljsSERH5CJYd8nppncJw69hsKCQbila/DLG+Ru5IRETkQ1h2yKv1yorBjSPSIZrrUcRTV0RE5ACWHfJKAoCRfZMxql9nWKrLULRmISDa5I5FREQ+iGXHxwgADEEaKBUCBEGAXRRRa7RAkjuYC2nUCky5KhM5XSJhOn0YpZ8tkTsSERH5MJYdH5AYbUBuehQ6xwQjPloPrVrZ4nOL1Y6yKhNOltRh79FyHD1TB189BhIerMPt43MQFRqA6l1fo2bn53JHIiIiH8ey46VUSgF9cuLQv3s8YiOCYLeLkBrrYC05guqyU5BsZkiiCIVGC01EAqJDoxCTGYV+3eNgttix53A5vvv5NE6V1sm9K22WnRqByVdlQK0Ayr9cDtOJfXJHIiIiP8Cy42UEAPmZMRg9IAXBQRrYGupQ/dMXqNn1TZuuWQlMzkZwdn/kdeuEXpkxOF5Ui693nsSew+XuD+8ghULANVekYGjPJFjra3Fm3Wu844qIiFyGZceLxEXpMfnKdMRH6WGtr0XpZ++h8czhdq3DdHwvrGf2w2YHgvNHICG9L24dm42i8np8+v1R7D1a4ab0jgkzaDFtdBYSYwxoOLEPZZuXyR2JiIj8DMuOF1AoBIwo6ISRfTpDtNtQ8f3HMO7f7txKRRE1hZtQU7gJ+qx+iMobienX5uBkSR3WfnsYR0/Lf+QkLz0aE0ekQSUAld9/DOOBHXJHIiIiP8SyI7OIEB2mjclGfGQQzCXHUbLpXy5/35Nx71YY925FcPdBiMsdjrsn5mHf0Qqs23IUpRWef25NoE6F64d1Q15aNKx1VTiz/g2IDbUez0FERB0Dy46M8tKjMWlEGpSChIpvP0L9oR/dur3a3d+idvcWhPUbjbS0Pnjo5l7YubcEn/5wFLX1nnmhZk6XSEwckQadVom6fVtR+cNaj2yXiIg6LpYdGaiUAsYP7YZ+OXFnj2y8DrHBU3dNiajaug5VhZsQOXgiemZkIj8jGlt2ncFXhSdQb7K6ZavhwTqMH9IVWakRsDXUoeTjpbBWFbtlW0REROdj2fGwiBAdbhuXg+iwQBgP/oSKb1fKE8RmQfmXy6EINCBqyB8wKK8zBvSIxw+7z+DrwpOoa3DNkR6dRomhvTthaM9EABJqf92Cqm0bXLJuIiKitmDZ8aAe3aLwhyvToRQklH+9AqZje+SOBLGhDiUb34JKH4aIQTdgYG5nDMxNwJ7D5diy6wyOnK52aL2GQDUG9UzCgB7xUCsVsJQeR9mX70FsbHDtDhAREV0Gy44HqFUKjB/aFX2z42A1Vjc9R8Zjp63axmasQsnGt6AIDEZ4vzHISslAj25RqDGasftQOX49Uo5jZ2phs4sXXUegToXsLpHo0TUK3ZJCIQiAtfw0ir//GNbKIg/uDRER0f+w7LhZfJQe00ZnITxYJ+9pqzYSG2pR/uX7ABQIzumPoG690L97LAbmJUCUJFTXmVFUXo9Gsw2i2PRGrvAQHaLDA2EI1ECSJNgtZjSe3IfKbev5cEAiIpIdy46bKJUCRvZJxvDeSRDtVpRtfheNp36TO1Y7iKjdswW1e7YAAAJSuiMwoRuCwuOQHhcCKJQAhKZHPlsbYasrQt3xItTu2wZbdamsyYmIiM7HsuMGyXEhuPHKNESGBsBcfAwln7/r8mfneJrp6G6Yju6WOwYREVG7sey4UHiwDmMGpaJH1yjYLBaUfbkcpuN75Y5FRETUobHsuEB4sA5DeiWhb04cIImoO7ADlT98AogXv5iXiIiIPINlx0ECgJSEUAzMi0d2l0hIogRL0WGUf/UBRAtvryYiIvIWspcdURSxcOFCfPjhh6irq0NBQQHmzZuHpKSkC85fVVWFp59+Gt988w0EQcCYMWPwyCOPICAgwO1ZBQCJMQbkdI1E74wYBOu1sNlsaDjyC6p+WMeSQ0RE5IVkLzuLFi3C8uXL8eyzzyI2Nhbz58/HjBkzsHbtWmg0mlbzz549GyaTCUuXLkVtbS0ee+wxNDQ04LnnnnN5NqVSQHykHkmxBqTEhyC9UxgCdGrYRRH2mnJUfP8DjPsLAfB0FRERkbeStexYLBYsWbIEc+bMwdChQwEACxYswKBBg7Bp0yaMHTu2xfw//fQTtm/fjg0bNqBLly4AgL/+9a+YMWMGHnzwQcTExDiUQ6VUICslAiEGLcKCdYgKDUBsRCDCgnVQKhRNz46xWmCrOoOKn36B8eCPPn93FRERUUcha9nZv38/6uvr0b9//+ZpwcHByMrKwo4dO1qVncLCQkRFRTUXHQDo06cPBEHAzp07MXr0aIdyhOi1mH5tDiRJap4mCAIkUYRos0Ky2yBIEtQhUQjNH4HQ/BEObcdTBAE4b1eoHTh2zuH4OY5j5xyOn+N8dewUGl2b55W17BQXN731Oi4ursX06Ojo5s/OV1JS0mpejUaD0NBQFBU5/zoCQRBa/r9CAUGhAFRqp9dNRERE8lDIuXGTyQQAra7N0Wq1MJvNF5z/QtfxXGx+IiIiIlnLjk7XdAjKYml5/YvZbL7g3VU6na7VvOfmDwwMdE9IIiIi8mmylp1zp6RKS1u+S6m0tPSCFxvHxsa2mtdisaC6uhrR0dHuC0pEREQ+S9ayk5GRAb1ej23btjVPq62txd69e1FQUNBq/oKCAhQXF+P48ePN07Zv3w4A6NWrl/sDExERkc+R9QJljUaDqVOn4oUXXkB4eDgSEhIwf/58xMbGYtSoUbDb7aisrITBYIBOp0Nubi569uyJBx54AE888QQaGhowb948XHfddQ7fdk5ERET+TZAkeW84s9vteOmll/DRRx+hsbGx+QnKiYmJOHXqFEaMGIFnnnkGEyZMAABUVFTgySefxLfffgutVourr74ajz76KLRarZy7QURERF5K9rJDRERE5E6yXrNDRERE5G4sO0REROTXWHaIiIjIr7HsEBERkV9j2SEiIiK/xrJDREREfo1lx8uJoohXXnkFgwYNQl5eHmbOnImTJ0+2adlPPvkE6enpOHXqVIvpv/zyC26++Wb06NEDQ4YMwSuvvAJRFN0RX1buGLv169dj7NixyM3NxejRo7FmzRo3JPcO7R2/c2P2+x/nj+HGjRsxevRo9OjRA9dddx1++OEHT+yKx7l67ERRxFtvvYWrrroKeXl5GDNmDD788ENP7Y5HuePr7hyLxYJx48Zh7ty57twFWblj/Pzie4ZEXu3VV1+V+vbtK3311VfSvn37pNtvv10aNWqUZDabL7ncqVOnpF69eklpaWnSyZMnm6cfOXJEys3Nlf7yl79IR48elT799FMpPz9feuONN9y9Kx7n6rH74YcfpKysLOn999+XTpw4IS1btkzKyMiQvv76a3fviizaO37PP/+8NHXqVKm0tLTFD5vNJklS0/hlZ2dL//rXv6RDhw5Jzz77rJSTkyMdOnTIk7vlEa4eu0WLFkm9e/eW1q9fLx0/flxasWKFlJWVJa1evdqDe+UZrh678z311FNSWlqa9Oc//9nduyEbV4+fv3zPYNnxYmazWcrPz5fee++95mk1NTVSjx49pLVr1150ObvdLk2ZMkW65ZZbWn3D/vOf/yzdcMMNkiiKzdNefvll6c4773TPTsjEHWP39NNPS9dff32L+a+77jrpqaeecv0OyMyR8ZsxY8Ylx+L222+X/vSnP7WY9oc//EH6y1/+4pLM3sIdYzdo0CBp0aJFLaY9+uij0k033eSa0F7CHWN3zjfffCMNGDBAGjNmjN+WHXeMn798z+BpLC+2f/9+1NfXo3///s3TgoODkZWVhR07dlx0uddeew1WqxWzZs1q9dl3332HsWPHQhCE5mmzZ8/G4sWLXRteZu4Yu4iICBw8eBBbt26FJEnYtm0bDh8+jB49erhlH+TkyPgdOHAAXbp0ueBnoijixx9/bLE+AOjbt+8lfz98kTvG7rnnnsP111/fYrpCoUBtba3rgnsBV4/dOZWVlXj00Ufx1FNPISwszKWZvYk7xs9fvmew7Hix4uJiAEBcXFyL6dHR0c2f/d4vv/yCJUuWYP78+VAqlS0+MxqNKCsrg8FgwP/7f/8PAwcOxOjRo/HGG2/Abre7Zydk4uqxA4Bp06Zh0KBBuPXWW5GdnY1bbrkF06dPx7XXXuv6HZBZe8evpqYGJSUlKCwsxLhx4zBw4EDcfffdOHr0KACgtrYWDQ0NiI2NbdP6fJmrx06hUKB///4txu7MmTNYv349Bg4c6MY98TxXj905jz32GIYNG4bhw4e7L7wXcPX4+dP3DJYdL2YymQA0vR3+fFqtFmazudX8DQ0NmDNnDubMmYPk5ORWnxuNRgDAc889h/j4eLz55puYMWMGXn/9dbz66quu3wEZuXrsAKCoqAhVVVWYN28eVq1ahblz5+Kdd97BypUrXZ5fbu0dv4MHDwIAJEnCM888g3/84x8wm8246aabUF5ejsbGxnatz5e5eux+r7y8HDNnzkRERATuuusuN+yBfNwxditWrMDhw4fx6KOPujm9/Fw9fv70PUMldwC6OJ1OB6DpDoJzvwYAs9mMgICAVvM//fTTSElJweTJky+4PpWq6bd7wIABuPfeewEAmZmZqKysxD//+U/86U9/anGo0pe5euwA4L777sPYsWNx8803A2gau5qaGsyfPx8TJkyAQuE//3Zo7/j17t0bP/zwA8LCwpq/hhYuXIihQ4fio48+wqRJk5rXd76Lrc+XuXrs7rjjjuZ5jxw5gjvuuAN2ux3vvvsugoOD3bw3nuXqsRs5ciTmz5+Pt99+G4GBgZ7ZCRm5evwmTJgAwD++Z/jP385+6NyhyNLS0hbTS0tLERMT02r+VatW4fvvv0d+fj7y8/Mxc+ZMAMDYsWPx2muvISwsDFqtFmlpaS2W69atGxoaGlBZWemmPfE8V49dZWUljhw5gu7du7dYLi8vD9XV1aiurnbPjsikveMHAOHh4S3+4gsICEBiYiJKSkoQGhqKwMDAdq3PV7l67M7ZuXMnJk+ejICAAKxYsQJJSUluSC8vV4/dhg0bUF9fj+nTpzf/2S4sLMTatWuRn5/vvh2RiavHz5++Z7DseLGMjAzo9Xps27ateVptbS327t2LgoKCVvNv2rQJ69atw5o1a7BmzRo8/fTTAIA33ngDkydPhlKpRM+ePbFr164Wyx04cADBwcEIDQ116/54kqvHLiQkBAEBAThw4ECL5c6NXXh4uHt3yMPaO34ffPAB+vbti4aGhuZpRqMRx44dQ9euXSEIAnr27Int27e3WG7btm3o3bu3+3ZEBq4eO6DperIZM2agW7dueO+99/yuIJ7j6rGbOnUqPvvss+Y/12vWrEFOTg6GDx/ul8/IcvX4+dX3DFnvBaPLeumll6Q+ffpImzdvbvHMBIvFItlsNqm0tFQymUwXXHbr1q2tbp/eunWrlJmZKb3yyivS8ePHpfXr10u9evWSXn31VU/tkse4euxefPFFKT8/X1q9erV04sQJafXq1VJ+fr701ltveWqXPKo943fmzBmpd+/e0j333CP99ttv0i+//CLddttt0siRI6XGxkZJkiTp22+/lTIzM6UlS5ZIhw4dkp577jmpR48efvmcHVeOndVqla688kppxIgR0okTJ1o8C6WiokLmPXU9V3/d/d7UqVP99tZzSXL9+PnL9wyWHS9ns9mk559/XurXr5+Ul5cnzZw5s/kb8MmTJ6W0tDRp1apVF1z2Qt+wJanpeRPXX3+9lJ2dLQ0dOlR6/fXXJbvd7vZ98TRXj53NZpOWLFkiXX311VJubq40ZswYafny5S2eP+FP2jt+e/bskaZPny716tVL6tmzp3TfffdJZ86cabHO1atXS1deeaXUvXt36frrr5e+//57j+6Tp7hy7Hbu3CmlpaVd8MewYcNk2T93csfX3fn8vey4Y/z84XuGIEmSJPfRJSIiIiJ34TU7RERE5NdYdoiIiMivsewQERGRX2PZISIiIr/GskNERER+jWWHiIiI/BrLDhEREfk1lh0iIiLyayw7RERE5NdYdoiIiMivsewQERGRX2PZISKvs2fPHtx6663o1asX8vPzcdttt+Hnn39u/vy///0vJk+ejLy8PAwcOBDz5s1DbW1t8+fHjh3D7NmzccUVVyAvLw/Tpk3Dzp07mz8/deoU0tPT8c477+Dqq69Gbm4uVq1aBQD47bffMGvWLPTs2RM9e/bEPffcg5MnT3ps34nI9fgiUCLyKkajESNHjkS/fv1w4403wmKxYPHixTh06BC+/vprFBYW4q677sKIESMwadIkVFdX4/nnn0dmZibefvttHDp0CDfeeCOSk5Mxc+ZMqNVqvPvuu/jxxx+xZMkS9OnTB6dOncKIESMQFBSExx57DHq9Hrm5uTCZTLjhhhuQmpqKWbNmwWazYfHixaisrMTHH3+MiIgIuYeHiBygkjsAEdH5Dh06hKqqKtxyyy3o2bMnACA1NRUffPAB6uvr8eqrryIzMxMLFy6EIAgAAI1Gg5dffhnl5eVYuHAhNBoN3n33Xej1egDA0KFDMXbsWDz//PNYuXJl87auueYa3HDDDc3//9BDDyEgIABLly5tXrZ///4YOXIk3nrrLfz5z3/21DAQkQvxNBYReZVu3bohPDwcd955J+bNm4fPP/8ckZGRePjhhxEaGoq9e/di5MiRzUUHAEaPHo3PPvsMkZGR2L59O4YNG9ZcVgBApVJhzJgx2LNnD+rr65unZ2Zmttj21q1b0adPH+h0OthsNthsNuj1evTu3Rvff/+9+3eeiNyCR3aIyKsEBQXhvffew+LFi7Fx40Z88MEH0Ol0GD9+PGbNmgVJki55OqmmpgaRkZGtpkdGRkKSJBiNxuZpgYGBLeaprq7Ghg0bsGHDhlbLh4eHO7FXRCQnlh0i8jqpqamYP38+7HY7fvnlF3z88cd4//33ERMTA0EQUFlZ2WJ+s9mMrVu3Ijc3FyEhISgvL2+1zrKyMgBAWFgYSktLL7hdg8GAAQMGYPr06a0+U6n41yWRr+JpLCLyKp9++in69euHsrIyKJVK5Ofn44knnkBwcDAqKiqQmZmJr776qsUy33zzDe644w6UlpaioKAAX331VYsjOHa7HevXr0f37t2h0Wguuu0+ffrg0KFDyMzMRPfu3dG9e3fk5ORg6dKl+Pzzz922z0TkXvynChF5lZ49e0IURdxzzz244447EBQUhI0bN6Kurg6jRo3CoEGDcNddd+HBBx/Eddddh/Lycrz00ksYOXIk0tLScO+99+Kbb77BLbfcgjvuuANqtRrLli3DyZMn8dZbb11y23fffTcmT56MWbNmYcqUKdBqtfjggw+wefNmvPLKKx4aASJyNd56TkRe55dffsHLL7+MPXv2wGQyoVu3brjzzjtx5ZVXAgC+/vprLFy4EAcOHEB4eDhGjx6N++67r/kanH379uGll15CYWEhBEFAjx49cO+996J3794A0Hzr+TPPPIMJEya02Pavv/6KBQsW4Mcff4QkSUhLS8Mdd9yBESNGeHYQiMhlWHaIiIjIr/GaHSIiIvJrLDtERETk11h2iIiIyK+x7BAREZFfY9khIiIiv8ayQ0RERH6NZYeIiIj8GssOERER+TWWHSIiIvJrLDtERETk11h2iIiIyK/9f8ivMJaRXjKUAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAG6CAYAAADu0oe7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABWV0lEQVR4nO3dd3wUBf4+8Ge2pyebXiAJpIcQWuggTVBBqXqgKOoB6qmcBdtPv3w95XuiqJyIYEXPQhEREEEFThBFqSJFinQIpPey2d3Zmd8fOaIxlGyyu7O7ed6vFwdOZnee+RjDcztNkGVZBhEREZGXUikdgIiIiMiZWHaIiIjIq7HsEBERkVdj2SEiIiKvxrJDREREXo1lh4iIiLwayw4RERF5NZYdIiIi8mosO0REROTV3KrsvPXWW7j99tuvuE5ZWRkeffRR5OTkoGfPnvjHP/4Bk8nkooRERETkaTRKB7jok08+wb/+9S/06NHjiuvNmDEDJpMJH3zwASorK/H000+jtrYWL774oouSEhERkSdRvOwUFBTgf//3f7Fjxw4kJCRccd29e/di586dWL9+PTp27AgAeO655zB16lQ88sgjiIyMdEFiIiIi8iSKH8b69ddfodVq8cUXXyA7O/uK6+7evRvh4eENRQcAevbsCUEQsGfPHmdHJSIiIg+k+Cc7Q4YMwZAhQ5q1bkFBAaKjoxst0+l0CA4ORl5enjPiERERkYdTvOzYw2QyQafTNVmu1+thNptb/L6SJKO2ztqaaERERB5NEATotCpoNerLriPL8sU/AfJ/f8fvixr9s7Op1BAEoVmrelTZMRgMsFgsTZabzWb4+vq2+H3Lqurw4r93tSaacwmARq2GaLO59PvIY3Fe9uG87MeZ2Yfzsp8LZxZp9EW/7Fh0S4uARq2CaDFDLC9A3bmjMJ3/DdYS9zxyEjPhEWgCjM1a16PKTlRUFDZt2tRomcViQXl5OSIiIlr13r+3Vfcj4L/NVXbvnO6C87IP52U/zsw+nJf9XDEzvVaN6/slom/nGEiSBGvhWeTv/AqWkvNO2Z6j2TMVjyo7OTk5ePnll3HmzBnEx8cDAHbu3AkA6N69u5LRiIiIPEZ6ghEThqXC30cL07kjKPp2GSCJSsdyGrcuOzabDaWlpQgICIDBYEB2dja6deuGhx9+GM8++yxqa2sxa9YsjBkzhpedExERNUPfzjEYMygJtrpaFKx/H5bCs0pHcjrFLz2/kry8PPTv3x/r168HUH/y1IIFCxAXF4cpU6bgoYcewsCBA/Hss88qG5SIiMgDXNsrHmMHJ8NSmofzS+e0iaIDAILMA6goqTBhzgc7lY5xWYIgQKNRQxRtPN7dDJyXfTgv+3Fm9uG87HepmWnUgI9WAJp3AVIT13Rvh16Z0agrOIOSHz53YFrHE2RAEOugusKhtZibH4XWG09QJiIiaosy4rToEKWHWtWypqPTquFnMOH40aOw1VUDSQMdnNAJJBt0JafhU3i0pf2uAcsOERGRG8uI0yI1zge+vkEQ1Fq7/+JXq1UIDfIBZAnWiiJA37xPQ5RmtUmoUtffW8+38Gir3otlh4iIyE1p1ECHKD18fYOg1tp/PzlBEBBh9IVaLcBalg+t+vI3DHQ39VkDUBWaAEPxiSse0roatz5BmYiIqC0zaAWoVQIEtbZFrw8O0EOtVkGsKoUsSQ5O53xatQpQqSFrDK16H5YdIiIiN3XxaQgtOWdFq1XDz0cLyWKCZKlzaC5Xk1t50g7LDhERkRcK9tdDlmWIVWVKR1Ecyw4REZGX8TFoodepYautAh9IxrJDRETkXQSh/lMdSUL/oYPw/idL7Hr5NaNutPs1l/LCvHn4y91/bfX7OALLDhERkRfx99VCrRYgVvPw1UUsO0RERN5CEBDgq4NsEz3+pGRH4n12iIiIvISPXgO1SoC1svKSXz9x6hTeX7IU+3/9FdU1NQgJCsLAfn1x7513Qq/XN6xXU1uL2S+/gh+2b4der8eQgQNwz5QpMBh+vwT8h+3b8eGy5Th15gz8/fwweMAATJtyB3wMrbtM3BlYdoiIiLxEgK8OsiRBspiafK2ktBQPPvEkMlJT8dTDD0Gr1WLH7j34dPVqhBmNuO3mmxvW/XztWvTOycGzTz6Bs7m5ePejj1BYVIz/e+ZpAMDGLVsw++VXcO2gQfjr7ZORX1CIdz78EKfPnsUrs5+HILT2AQ+OxbJDRETkBXRaNXRa1X+vwGrq5OnTSOqQiOeeehK+vvV3Y+7RpQt2//ILfjlwsFHZiW/fHrOf/n9QqVTo3aMHVIIKr7/zDk6ePoPE+PZ464N/o2f3bnhm5qMNr4mLicEjzzyD7bt3o09OjnN31k48Z4eIiMgL+Pvq6u+rc5myk9OtG+bPmQOdTofTZ89i244d+Gj5cpSXl8NitTZad1C/flCpfq8IA/v2AQDs+/Ugzubmoqi4GP169YJoszX8ys7qBD9fX+ze+4vT9rGl+MkOERGRh1OrVfDRayBbTLjcfXUkScI7H36IVevWw2QyISI8DOnJKdDpdYDc+DXGkJBG/xwcHAwAqK6uRmVVfZmat3AR5i1c1GQ7xaUlrd8hB2PZISIi8nB+PvXPzhJrKi67zieffYZPV6/Bo/ffj4F9+8Dfzw8AcM/DjzRZt6q68adDpWX1l7EHBwU3vO6+u+9Cl6ysJq8N8Pdv2U44EQ9jEREReThfgwaQRMiS7bLrHPj1EBLat8cN1w5rKCxFxSU4eeYMpD99srN99+5G//zt1q0QBAFds7LQPi4OIcHByCsoQFpycsOv8NBQvP3Bv3HsxEnH72Ar8ZMdIiIiD6bVqqFRqyDWVF9xvfSUFHy4fDk+WbECmWlpOJ+Xh48/XQGr1Yq6usb35Dly7Bhemj8fw665Bod/+w3vf7IEN1x7LeJiYwAAU2+fjFfeWAiVSoW+PXuiuqYGHy5bjqLiYqQmdXTavrYUyw4REZEH8zVoIMuAzXTlsnPbLTejorISn32xFv9etgyR4eEYPngwBJWATz5dgarq6oZDUHdOmoQjvx3Dk889Bz9fP0waPx5Tbp3U8F6jRoyAr68vlq38HF9+/Q18fAzolJ6BZ2Y+iuioKKfub0sIsiy3+SeElVSYMOeDnUrHuCxBEKDRqCGKNvBf19VxXvbhvOzHmdmH87LfxZn5aCUM7uSHwKBwCCrtJdeNDveHShJhKS90cUrns9psKK0ohf/xrdCYG5e5mJsfhTbA2Kz34Tk7REREHkqnU0OtEmCrq1E6iltj2SEiIvJQvgZt/SGsulqlo7g1lh0iIiJPJAjw1WsgixZc7t46VI9lh4iIyAMZdGqoVAJsdVc+MZlYdoiIiDySQVd/FZZkbvrQT2qMZYeIiMgD+eg1gM169RWJZYeIiMjTaDQqqNUCJEvd1Vcmlh0iIiJPc/EQ1tVuJEj1eAdlIiIiD2PQa6ASZKh1l77RoLNJNhskUVRk2y3BskNERORBBEGAj16DgAAD1CHKPGHcZpNQcva0xxQelh0iIiIPov/vJedqtQqfrDuAwlLX3j05wuiH20ZmQaVW2112JEnCB0uXYt03G1BdU4PsTp3w8H33Ov15Wiw7REREHsRHr2l4xlhhaQ3OF1YpnKj5Ply2HKvXrcdTDz+E8NAwvPn++5g563/xwRsLoNU675AcT1AmIiLyIAa9BrJkUzqG3axWK5avWoW7J9+GPjk5SOqQiP994nEUlRTjux9/dOq2WXaIiIg8hEZT/+BP2QMvOT9+8hRqTSZ0z85uWBbg74+Ujh2x7+CvTt02D2MRERF5CINODRnwyLJTVFIMAIgIC2u0PNRoRFFxkVO3zU92iIiIPIRepwYkCbIsKR3FbnVmMwA0OTdHp9XBYnHunaBZdoiIiDyEXquG7KGPiNDrdADqz935I4vVAoPB4NRts+wQERF5AK2m/pJzyex5h7AAICIsHABQXFraaHlJaSnCQo1O3TbLDhERkQfQ//d8Hclcq3SUFunYIRF+vr745cCBhmVV1dX47cQJZGd2cuq2eYIyERGRB7jU+ToRRj+X52jpNnVaLcaOGom3PvgAwUFBiIqIwKLF7yMiLBzX9Ovr4JSNsewQERF5gPrzdSwA6p9NZbNJuG1kliJZbDYJks3+e/3cfdttsNkkvDT/dZgtFmRnZmLuc/+ARuPcOsKyQ0RE5OY06vrzdcTa+vN1JFFEydnTUKnViuRp6YNA1Wo17r3rTtx7152OD3UFLDtERERuTqdVNTlfRxJFj3kQp9J4gjIREZGb02k99/467oBlh4iIyM1pNSqPvb+OO2DZISIicmNqtVB/fx0PfESEu2DZISIicmMadf1f1Z56fx13wBOUiYiI3JhGrYIsy4DE83Vaip/sEBERuTGNWgVZsv+eNvQ7lh0iIiI35aPXQKUSANGidBSPxsNYREREbio23B8AIFnM+PPtA1UajcfdVFApLDtERERuKjbCH0AtJNEC9R+KjUqjQVj7eEXLTvHZMx5TeFh2iIiI3FRseABMlTVNlqvUaqjUahR9uwTWskKXZtKGRCB8yK1QqdWtKjsff7oCu37+Ga/NecGB6S6NZYeIiMgNqVUCIkN9cbpMBDSX/gTHWlYIS8l5FydrvVXr1uG9jz9G54wMl2yPZYeIiMgNRYf51V+JZbMC0CsdxyGKS0rw8oI38MuBA4iLiXHZdnk1FhERkRuKjwqEJMmQrN7zmIijx09Aq9Vg8YLXkZGa4rLt8pMdIiIiN9Q+KgCSaAYgKx3FYfr16ol+vXq6fLv8ZIeIiMgNJcYEwlZVqnQMr8CyQ0RE5GaC/fXw99XBUpirdBSvwLJDRETkZuKjAwAAptwjCifxDiw7REREbqZ9VCBE0QaRh7EcgicoExERuZn46ECgruqq62lDIlyQRvlttpbiZUeSJCxYsAArVqxAVVUVcnJyMGvWLLRr1+6S65eUlOCf//wntm3bBlmW0bdvXzz55JOIjIx0cXIiIiLHU6sExIT7w3r+6GXXkWw2SDYbwofc6sJkTbfvKRQvOwsXLsSSJUswZ84cREVFYe7cuZg6dSrWrl0LnU7XZP2HHnoIoiji/fffhyzL+Mc//oH7778fn332mQLpiYiIHCsm3B8atQpVVyo7oojis2c8+kGgTz38sIPSXJ2iZcdisWDx4sWYOXMmBg0aBACYN28eBgwYgA0bNmDUqFGN1q+srMTOnTuxaNEipKenAwCmT5+Ov/3tbygvL0dwcLCL94CIiMix2kcFQJZlmM78CjR51vnvJFH0mAdxKk3RE5SPHDmCmpoa9OnTp2FZYGAgMjIysGvXribrGwwG+Pn5YfXq1aiurkZ1dTXWrFmDxMREBAYGujI6ERGRU7SPCoTNagFEs9JRvIain+zk5+cDAKKjoxstj4iIaPjaH+l0OsyZMwezZs1Cjx49IAgCIiIi8PHHH0Olal1vEwShVa93KuH33wW4cU53wXnZh/OyH2dmH87LLgkxQZD+exVW/V9N9VNri5MT/vu/giA0+XvannkoWnZMJhMANDk3R6/Xo6Kiosn6sizj8OHD6Nq1K6ZOnQqbzYZ58+bhb3/7G5YuXQp/f/8W5RAgQHOZJ8q6E41Cx2Y9FedlH87LfpyZfTivq/PRa2AMNKD66BkAgFqtqi88gnCx+bQtggBBADQaFTRSyz/UULTsGAwGAPXn7lz8MwCYzWb4+Pg0Wf+rr77Cxx9/jM2bNzcUmzfffBODBw/GZ599hjvvvLNFOWTIEEU3PqtcqP8hIdps3vSIFOfhvOzDedmPM7MP59VssXH1p2TUnPoVAGATJciyDFz81dbIMmRZhmiVAKvU4rdRtOxcPHxVWFiI9u3bNywvLCxEampqk/V3796NxMTERp/gBAUFITExEWfOnGlVFtmNv4kaPvaV3Tunu+C87MN52Y8zsw/n1XztowJhs0kw552CRquCYK0DJBssNqlNfjJmsUmAZINgNTX53rHnO0nRspOWlgZ/f3/s2LGjoexUVlbi0KFDmDx5cpP1o6KisG7dOpjNZuj1egBAbW0tcnNzcdNNN7k0OxERkaO1jwqEbK5t+GeVJEJXchpVah2AAGjVbefBB1abhKqaKuhKTkMlte6qM0XLjk6nw+TJk/Hyyy/DaDQiNjYWc+fORVRUFIYPHw6bzYbS0lIEBATAYDBgzJgxeO+99/DQQw/h73//OwDgX//6F/R6PcaNG6fkrhAREbWKACA+KgDWotONlvsU1t9vpyo0AVC1oU93JBt0Jacb9r81FL+p4IwZMyCKIp555hnU1dUhJycH7733HrRaLXJzczF06FC88MILGDduHCIiIrBkyRLMnTsXU6ZMgUqlQo8ePbBkyRIEBAQovStEREQtFmb0hV6nQdmF442WCwB8C4/CUHwCssYAuQ2cpyzIgCDWtfoTnd/fjwdQUVJhwpwPdiod47IEof5qMVG08Xh3M3Be9uG87MeZ2Yfzap4eGVG4ZVgKcpe/BNlUBY1WBdEqcWaXEXPzo9AGGJu1bts5+EdEROTG4qMDYRNFSLWVSkfxOiw7REREbiAxOhBSTbnSMbwSyw4REZHCdFoVwo2+sBSdUzqKV2LZISIiUli7yECoBAG1Zw4pHcUrsewQEREpLD46EJIkwZTb+susqSmWHSIiIoXFRwVCstQBUssfiUCXx7JDRESksPjoQIjlhUrH8FosO0RERAoKCdDDz0eLurwTSkfxWiw7RERECoqPCQIA1Jzcr3AS78WyQ0REpKD4qECIogixoljpKF6LZYeIiEhBiTGBgIl3TXYmlh0iIiKFaDUqRIf5o64oV+koXo1lh4iISCHtowKhUgmoPXVA6ShejWWHiIhIIYkxQfU3EzxzROkoXo1lh4iISCEd4oIg1dUC4M0EnYllh4iISAEqof5KLGvpBaWjeD2WHSIiIgVEh/tDp1Wj9uxhpaN4PZYdIiIiBSTGBEGSZVSf4M0EnY1lh4iISAGJsUGQLGbAWqd0FK/HskNERKSADrFBfPini7DsEBERuVhokAH+PjrUnT+mdJQ2gWWHiIjIxRJjgyHLMqqP/6x0lDZBo3QAIiIiRxMAtI8ORFZSOAL9dPh+by7OFVQpHatBYkwgbKIIW3W50lHaBJYdIiLyKh1ig3Hb9ekI9NPBZpMAWULX1AgcPlWCddtOoaCkRumISG4XAqmqROkYbQbLDhEReY2QQAPuvDETWogo+Wktqo/uBAAYe41EcnIP/H1iV7z+6S/IK6pWLGNokAEhgQaU/8L767gKz9khIiKvoNOq8NfRnaBTAwVfvIHqw9sBSQIkCaU/rUXepy9CkG2YOroTAnx1iuVMiTdClmVUHdmhWIa2hmWHiIg8ngBg0oh0hAf7oGTzUohVpU3WkepqUbj+HfgZNPjr6CxoNcr8FZgaHwKbxQyp1n3OIfJ2LDtEROTxuqRGoFPHMFQe2ArTucs/QdxacgGl33+G6DA/3Dws1YUJ66kEIKldCKzFuS7fdlvGskNERB5NADCsZzxEUw0q9my86vq1J/ej5rdd6JoagdR4o/MD/kH7qCDotWrUnNjn0u22dSw7RETk0TI6hCLC6IuKvf9p9mtKf1wDsc6E8UOSoVG77q/ClPgQ2GwSak7+4rJtEssOERF5uGG94iGa61Bt5wm/JVuXIyhAj6E9452UrKnU+BBIpqr6E6fJZVh2iIjIYyW3C0FcRACqDn5v92vrco/BUnAGg7vHITzExwnpGjPo1IiLCIA576TTt0WNsewQEZHHGtYrHqLFgsp9W1r0+qJNHwGyhLGDkh0b7BKS2oVApRJQ9d97/5DrsOwQEZFHig73R4fYINQcbfn9aiRLHaoP/Yjk9iFIaR/iwHRNpSUYIYoiLIVnnbodaoplh4iIPFL3tEjYbBLK92xq1fuU7/4GorkONw7sCMFB2f5MJQCdk8JgK81z0hboSlh2iIjI4wgC0C0tAraKQkASW/1+Fbu/RlSoH7qmRzogXVPJ7Y3wMWhR8es2p7w/XRnLDhEReZyOccEI8NWh6vB2h7xf9dFdsNZU4Ia+idCoHf/5TpfUcIiiCNOpAw5/b7o6lh0iIvI43VIjYRNFVB/d5bD3LP1+JQL9dBjQtZ3D3hMANGoBWUnhEIt4ro5SWHaIiMijaNQCOieHO/yRC3UXTsBalo+hPdvDz0frsPdNSwiFXqtGxYGtDntPsg/LDhEReZT0xFDodWpU7P/O4e9d9O1SaNUChvdOcNh7dk2NgGi1oC73mMPek+zDskNERB6lW1okRIsFdbm/Ofy9xcoS1OX+ht6dohFh9G31++m0KmQkhsKSf8oB6ailWHaIiMhj6LVqpCcYYck/4bRtFG1ZDlmScOOAjq1+r04dw6HRqFDRwpsekmOw7BARkcdITTBCrVah8sAPztuIaEH14Z+QlmBs9Y0GB3aNg1hn4o0EFcayQ0REHiOjQyhEqxXmgtNO3U75rq8g1pkwYVgKtJqW/VWZnmBEbIQ/qg44/twisg/LDhEReQRBADISjBBLL7hke8VbliLIT4/r+yW26PXD+yRANNeh8oD9Dyklx2LZISIijxAfHQQfgxbVx352yfbMF06gLvco+mfHIj460K7XpiYY65/G7oQrxsh+LDtEROQRMjqEwmaTUHPcNWUHqL8U3Wa1YOLwNLvurHxd74uf6vDeOu6AZYeIiDxCpw6hkKpLAUly3UYlEaVbV8AYZMAt16Y160GhmR3DEBcZwHN13AjLDhERuT1joAHhIb6oPXPI5ds2nT2M6l+3oUtKOG4alHTFdWMj/HHriDRYa6tRuZ+f6rgLjdIBiIiIriazYygkWUblQSdecn4FZTu/gsonAP2zs1FTa8WmnWearBMSaMC0MZ2hkm3IWz1fgZR0OSw7RETk9jI7hEGqq4VUV6NYhpLvPoXa4IcRfZLQIS4Im3acxcnz5dBqVEiMDcb4wcnQawUUrHlD0ZzUFMsOERG5Nb1WjYSYQNSd+VXpKCj85n2E9Lweiam9cN+EbJRUmBDsr4darYJNFFG04X2IFUVKx6Q/YdkhIiK3ltQuGGqVClWHdygdBUD9Ia2ynV8hqOsQBHbIRt25E6g59jNM544qHY0ug2WHiIjcWmq8EaIowuxmD9Os2PstKvZ+q3QMagZejUVERG4tPdEIqbJY6RjkwVh2iIjIbYUGGRAcYEDtmcNKRyEPxrJDRERuKy0xFLIso+rwT0pHIQ/GskNERG4rLd4Im7mOl3JTq7DsEBGRW1KrBXSMC4al6KzSUcjDsewQEZFbSowJhlajctlTzsl7sewQEZFbSk0Igc1mg+n0QaWjkIdj2SEiIreUnmCEVFOudAzyAoqXHUmSMH/+fAwYMABdunTBtGnTcO7cucuub7Va8corrzSsP3nyZBw+zEsSiYi8SaCfDpFGP5hyf1M6CnkBxcvOwoULsWTJEjz//PNYtmwZJEnC1KlTYbFYLrn+s88+i88//xz//Oc/sXLlShiNRkybNg1VVVUuTk5ERM6SEm+sv+T8EC85p9ZTtOxYLBYsXrwYM2bMwKBBg5CWloZ58+YhPz8fGzZsaLL+uXPnsHLlSvzf//0fBgwYgI4dO2L27NnQ6XQ4eJDHdImIvEVaghE2qwViZYnSUcgLKPpsrCNHjqCmpgZ9+vRpWBYYGIiMjAzs2rULo0aNarT+tm3bEBAQgIEDBzZa/9tvW/9sEkEQWv0eTiP8/rsAN87pLjgv+3Be9uPM7GPnvAQBSG0fArE0171/NjvRxd2u/71tzuBq7JmKomUnPz8fABAdHd1oeURERMPX/ujUqVNo164dNmzYgLfffhsFBQXIyMjAk08+iY4dO7Y4hwABGo26xa93FY3a/TO6E87LPpyX/Tgz+zR3XnER/jDoNSg7vQ8areJnWyhKrWnb++8oipYdk8kEANDpdI2W6/V6VFRUNFm/uroaZ86cwcKFC/H4448jMDAQixYtwq233or169cjNDS0RTlkyBBFW4te6xJC/Q8J0WYDZKXDeADOyz6cl/04M/vYOa/kdsGQJAlVR/cCkuT8fG5IEOqLjk2UIPN7rNUULTsGgwFA/bk7F/8MAGazGT4+Pk3W12g0qK6uxrx58xo+yZk3bx6uueYarFq1ClOnTm1xFtmNv5saPvaV3Tunu+C87MN52Y8zs4+980pLMMJWWwXZZnVyMndWPzOZ32OXZc9UFP187OLhq8LCwkbLCwsLERkZ2WT9qKgoaDSaRoesDAYD2rVrh9zcXOeGJSIip/PRaxAb4Q/zheNKRyEvomjZSUtLg7+/P3bs2NGwrLKyEocOHUJOTk6T9XNyciCKIg4cONCwrK6uDufOnUN8fLxLMhMRkfMktw+BShBQdXjH1VcmaiZFD2PpdDpMnjwZL7/8MoxGI2JjYzF37lxERUVh+PDhsNlsKC0tRUBAAAwGA3r06IG+ffviiSeewHPPPYfg4GDMnz8farUao0ePVnJXiIjIAdISjBCtVlhKzisdhbyI4qd5z5gxAxMmTMAzzzyDSZMmQa1W47333oNWq0VeXh769++P9evXN6z/+uuvo2fPnnjggQcwYcIEVFdX48MPP4TRaFRwL4iIqLUEABmJobCVFygdhbyMIPPMJ5RUmDDng51Kx7gsQai/NF4UbTxRrRk4L/twXvbjzOzT3Hm1iwzAjIndUPLTWlQf3u7ChO5HEARotCqIVonfY5cRc/Oj0AY074MOxT/ZISIiAoDMDmGwSRKqj+5WOgp5GZYdIiJyC5kdQ+ufci6JSkchL8OyQ0REigsO0CMq1A+ms4eVjkJeiGWHiIgUl9EhFLIso+LAD0pHIS+k6KXnRETUPD56DTrEBqFdZCDaRQUg0E8HrUYFrVqFyloLCktrUVRmwrFzZTibV+lxT7HI7BAGm9kEqbZS6SjkhVpUdgoKCi55h2MiInIctVpARmIYeqRHIi3BCJVKgM0mQTbXQjJXQ7aKkOtERBr8EJUYBCE5HCP6JKCq1oL9x4rww77zKC4zKb0bV6XTqtAxNgh153gIi5yjRWVn8ODB6Nu3L8aNG4dhw4Y1eZAnERG1nFajQp+sGAzu0Q7+vjqIFjNMZw6i8uAPsBRd4dE4KhX8U3Lgn9oDvTtFo0/nGOw/VoSNO8+isKTGdTtgp5T2RqjVKlQd+knpKOSlWlR2XnjhBaxZswYzZ86Ev78/Ro4ciXHjxiErK8vR+YiI2gy1SkDf7BgM7RkPX70GYmUJCjeuh+nc0ea9gSSh+sgOVB/ZAWgNCO03GlkdM9E5ORzb9p3HV9tOwSq631PEO3UMg2i1wpx/Suko5KVaVHZGjx6N0aNHo6CgAKtWrcKaNWuwdOlSJCUlYdy4cbjpppsQFhbm6KxERF4rs0MobhqYhJBAPawVxSj4z2qYC063/A2tdSjZshzQ6BA+6C/o1zkVWR3D8OnG33DsXJnDcreWRi2gU1IYxOKzSkchL+awOyj/+uuvmDNnDnbv3g21Wo3Bgwdj6tSpyM7OdsTbOxXvoOxdOC/7cF72c+TMwo2+GDcoCUntQiCaalD642qYzhxyUNLf6aM6IGzIrdAYfLBp5xls+Om0y05ivtK8spLCcMfITBRs+AB1ucdclMj98Q7KV2fPHZRbfTXW7t27sWbNGmzcuBGVlZXo168fBg0ahC1btmDSpEl4/PHHceedd7Z2M0REXkWvU+PaXgkY0CUWsmRD+d7NqNi7yWnbM+efxPkl/0TE8NsxNCcZ7SID8MlXh2EyK3sDv25pkRAtFhYdcqoWlZ0zZ85gzZo1+OKLL3D+/HnExsbi9ttvx7hx4xAdHQ0AmDx5MmbOnIlFixax7BAR/ZdKAHpnxWBEnwQYdBqYLxxH4eZlgLXOBVuXULjh3wjsPBBJ3a7FQ7d2x1sr96G00hXbbkqvUyMtwQjL+d8U2T61HS0qOyNGjIBer8ewYcPw/PPPo0+fPpdcr0OHDjh9+nRr8hEReQVBALJTIjCidwJCgwwQK0uQ/81yWEsuuDxL5f6tMBeeRfjwu/DgxG54+/P9yCuudnmOrKRwqFUCKvZ+6/JtU9vSonN2PvnkE9x0000ICAhwRiaX4zk73oXzsg/n9TsBgEGvgVajQk2dFTbbpedhz8z0WjW6pkVgcI/2MAYaIJpqULbjS9Se3O+EPbCPJjgCkTfeB1FW4b01B3H6QoVTtnO5eU0f1xmJ4QacXzLbKdv1ZDxn5+qcfs7ON998g969e1+y7Bw5cgSPPfYY1q5d25K3JiJymSB/HdITQ5GRGIr46EAY9BqoBKHh62arDVU1ZlworkVhaQ0KSmuRV1yDkoor36gvOECP+OhAZCdHID3RCLVKgFhTiaItX6D25D5n71azieWFyFs5D9FjZmD62Cy8veqA0wrPn/n7atExNtit5kHeq9llZ/fu3Q3tcufOndi1axdKS0ubrLd582acO3fOcQmJiBzMGGjA9f0S0SUlArIsw2YxQyw9h9qaCthqqyCLVqj9AqH2CUCgfzCC44KQmVh/4zsAkCQZ1SYLqmqsqKgxQ5ZkaLVqGHRqRIT4wqCv/9EqWi2wXDiGil+2wFLknpdWS7WVyPvsVURPeATTxmThrc/342y+8x/Z0CUlAoIAVOz9j9O3RdTssrNixQqsWbMGgiBAEAT84x//aLLOxTI0atQoxyUkInIQrUaFG/p3QJ+sGECWUH1iH8r3bICturxZr9cEGGGITYYhMh76wBD46H0RGaAHIACSDbJNhFhyBuUFZ1F79pAi5+O0hGSpRd7n8xA9/hFMG5uFN1fuw/lC553DIwDo3yUWYm0lxKqm/6eZyNGafc5OVVUVDh8+DFmWMWXKFMyaNQtJSUmN1lGpVAgMDERycjKEP3wU7O54zo534bzs01bmFW70xV2jMhEa5APzhWMo3rICkqW2Re/lredTqHwDED3uYVgkFV7/dK/Dnqv15++xjMRQ3HVTJ5RsW43qo7scsg1v463fY47klHN2AgIC0LNnTwDAhx9+iMzMTPj5+bUsIRGRC3VODsdfrk2FWpBRtOlD1OXyUudLkWqrULD6dUSO/TvuHZeN+ct+RmWNxeHbuaZ7O4gWM4sOuUyzy87q1atxzTXXICQkBBcuXMCFC1f+eHbMmDGtzUZE1Gp9s2MwdlAyrNXluPDFIkh1rr/E2pOI1WUoWv8OIkbdg3vGZ2PB8r0OvfFgbIQ/OsQGofLgDw57T6KraXbZefLJJ/Hpp58iJCQETz755BXXFQSBZYeIFDewaxxuHNgR5uLzyP9iodJxPIal5DyK//MRwobegalj6s/hcdQDRAd2i4PNZkPZ7o0OeT+i5mh22fnPf/6D8PDwhj8TEbmzQd3bYWT/DqgrOIuCdW8pHcfj1OUeQ9m2VYjrPw5TRmVi8RcHIUmtO3ck0E+HLskRMJ07DEjKPqaC2pZml53Y2NhL/vkiURRRXV2N4OBghwQjImqpXp2i64tO/mkUrH9H6Tgeq+b4z1D7+CG5xwhMHJ6GpV8fbtXDQ0f0SQAgo/SnLxyUkKh5VC15kSiKWLBgQcONA3fs2IF+/fqhT58+mDJlCioqXHNTKiKiP8tIDMW4wcmwlOaz6DhA5YHvUX3oR3RJCcfYwcktfp+OsUHIyYhC7cl9kGqrHJiQ6OpaVHbmz5+PRYsWobKy/sZTs2fPRnBwMJ566imcPXsWr7zyikNDEhE1R/uoQEy+IQM2UxXyvnhD6Theo2zHetQc34s+nWMwfkgK7L2xiFajwvghSRDrTCjZ+rlTMhJdSYvKzrp16/DII4/gtttuw4kTJ3Ds2DHcd999uOOOO/Dwww/j22/5UDcicq3gAD3+OroTBJsF+ateAyTHnFBL9Uq+X4mq3/agV6coTBhmX+G5vm8iAv30KNm8BAD/vZDrtejZWIWFhcjOzgYAbNmyBSqVCgMHDgQAREVFoaqKH1ESkevotCpMHZ0FvUaF/NWvQ7LUKR3JK5X+8Dkg2ZCTkYMAPx2Wfn3kqpeld+oYhn7ZMajLPQpz/ikXJSVqrEWf7ERERCA3NxcA8O233yI9PR1GY/1dDPfu3YuoqCjHJSQiugIBwG3XZSA8xBclm5dArCxROpJXK/1xDSr2fouU9iGYeXsPJEQHXXbdITntccfIDIi1lSj7fpkLUxI11qJPdkaNGoUXXngBa9euxZ49ezBr1iwAwP/93/9h6dKluPfeex0akojockb0TUR6ohEVv3wL07kjSsdpEyp++Ram3N8QPuIu3DchGwdPFuPnI4U4cqoEOq0a0WH+6NM5Gl1SIlCXdwqFX78PjVbp1NSWtajsPPTQQ/D19cWuXbvw6KOP4tZbbwUAHDhwAHfffTfuu+8+h4YkIrqU7JRwDM1pj9pzR1Gxl+cKupKlOBfnl76AsEG3ICM+GZ2TwiHaJGj+8GT4yl+3oWzH+v8+K7FFBxKIHKLZDwL1ZnwQqHfhvOzjqfOKCffHA7d0BUwVuLDiZZdumw9pbMqnXRr8U3tArC5H3fnjMJ0/3nDjQM7LfpzZ1TnlQaB/VlVVhe3bt6O2tvaS/yL4uAgichY/Hy3uvqkTBElE3ho+BsIdmM4d4WFEclstKjvff/89ZsyYAZPJdMmv89lYROQsapWAKaMy4e+jReH6tyBZapWORERurkVl55VXXkGHDh3w1FNPITIyEioVj8USkWuMGZyM+OhAlP30BSxFuUrHISIP0KKyc+LECSxcuBA9evRwdB4iosvqlx2D3p2iUf3bHlQfcd/z7IjIvbToI5mYmBhUV1c7OgsR0WUltwvBTQOTYC6+gJIf+MgBImq+FpWde+65B2+88UbDjQWJiJwpItQPU0ZlQjLXIv/Lt5SOQ0QepkWHsdauXYuCggJce+21MBqNMBgMjb4uCAI2bdrkkIBE1Lb5+2oxbXQW1IKEvDWvN1zOTETUXC0qO1FRUXwkBBE5nVajwl9HZyHAV4PC9W9DquVz94jIfi0qOy+88IKjcxARNaISgMnXZyAmzB8lW1fwyisiarEW31QQqL8qa9u2bSgsLMTtt9+Oc+fOIS0tDf7+/o7KR0Rt1PihKUhPNKJ8739Qe3Kf0nGIyIO1qOxIkoRZs2Zh5cqVkGUZgiDg+uuvx8KFC3H27Fl8/PHHPMxFRC02ok8iemZGo+roLlT+slnpOETk4Vp0NdbChQuxdu1azJ49G9u2bWt4XMRjjz0GSZIwb948h4Ykorajf5dYDOtZ/3DP0m2rlY5DRF6gRWVn5cqVmDFjBsaPH4/g4OCG5enp6ZgxYwa2bdvmqHxE1Ib0zIzC6GuSYC7KRdHGD5WOQ0ReokVlp7i4GOnp6Zf8WmRkJCorK1sViojanuyUcEwYmgJLWQHy1y5SOg4ReZEWlZ34+Hh89913l/zazp07ER8f36pQRNS2ZCSG4tYR6bBWlSFv1QKl4xCRl2nRCcpTpkzBrFmzYLVaMXjwYAiCgDNnzmDHjh1YvHgxnnzySUfnJCIvlZpgxB0jM2AzVSLv89cASEpHIiIv06Kyc/PNN6O0tBSLFi3CkiVLAACPPPIItFotpk6dikmTJjk0JBF5p+R2IbhzVCZkcw0urPwX745MRE7R4vvsTJs2DTfeeCN27twJjUaDgIAAZGdnNzphmYjocjrEBuOumzoBFhPOf/YqIFqUjkREXsrusvPll19i2bJl2LdvH0Sx/v+FGQwGdOvWDZMmTcKwYcMcHpKIvEt8dCD+OroTBLEOeStZdIjIuZpddmw2Gx599FF8/fXXiIyMxMiRIxEWFgZZlpGfn4+dO3fiwQcfxOjRozFnzhxnZiYiD9YuMgDTxnaGSrIi7/N5kCx1SkciIi/X7LKzZMkSbNiwAU8//TQmT54MQRAafd1ms2HZsmX45z//iR49emDChAkOD0tEni06zB/Tx3aGWrIib+U8SHW1Skciojag2Zeer169GhMnTsTtt9/epOgAgFqtxm233YZbbrkFq1atcmhIIvJ8YcE+uGdcZ2hUEvJWz4dUV610JCJqI5pddk6dOoWBAwdedb0BAwbgt99+a1UoIvIuQf563Ds+GwatgIIv3oBUU6F0JCJqQ5pddkwmE4KCgq66XkhICGpqaloVioi8h69Bg/vGZ8PfR4PCdW9DrChWOhIRtTHNLjuyLEOtVl/9DVWqhgeDElHbplGr8NfRWQgO0KNo479hKTmvdCQiaoNa9LgIIqKrEQRg8g3piIsIQNm2VTBfOKF0JCJqo+y6z86zzz4Lf3//K65TXc2TDokIuGlgEjISQ1HxyxbUHP9Z6ThE1IY1u+zk5OQAwFUPUfn5+aFHjx6tS0VEHq13VjT6d4lF9Yl9qNi7Sek4RNTGNbvsfPTRR87MQUReIjE2CGMHJcNSmo+S7z5VOg4REc/ZISLHCQ7Q485RmZAsdcj7YpHScYiIALDsEJGDaNQC7r6pE/QaFQq+XMQnmBOR21C87EiShPnz52PAgAHo0qULpk2bhnPnzjXrtV988QVSU1ORm5vr5JREdDWjr0lGpNEPJd+vgFhZonQcIqIGipedhQsXYsmSJXj++eexbNkySJKEqVOnwmK58lOQz58/j+eee85FKYnoSrqmRqB3VjRqT+6D6dQBpeMQETWiaNmxWCxYvHgxZsyYgUGDBiEtLQ3z5s1Dfn4+NmzYcNnXSZKExx57DJmZmS5MS0SXEh7igwlDU2CtKkXJ1hVKxyEiasKu++w42pEjR1BTU4M+ffo0LAsMDERGRgZ27dqFUaNGXfJ1b775JqxWKx544AFs377dIVku9XBTtyH8/rsAN87pLjgv+7RiXmqVgDtGZkItyMj78i33/u/IgS7uZv3vbWOfW4Pzsh9ndnX2TEXRspOfnw8AiI6ObrQ8IiKi4Wt/tn//fixevBifffYZCgoKHJJDgACN5uqPwlCaphmP66DfcV72acm8RvSOR4TRFxXbPoPKZoJKq/iRcZdSa9rW/rYW52U/zswxFC07JpMJAKDT6Rot1+v1qKho+lTk2tpazJw5EzNnzkRCQoLDyo4MGaJoc8h7OYVQ/xeRaLMBfOzY1XFe9mnhvDrEBmFg11iYzh9D1bF9zsvnhgSh/i8hmyiBjwK8Os7LfpyZYyladgwGA4D6c3cu/hkAzGYzfHx8mqw/e/ZsJCYmYuLEiQ7P4s4PL204tCC7d053wXnZpyXzMujUmDQiDTaLGUWbPkLb+2lcPzOZ32PNxHnZjzO7GnumomjZuXj4qrCwEO3bt29YXlhYiNTU1Cbrr1y5EjqdDl27dgUA2Gz1n8aMGjUK9957L+69914XpCai0YOSEOCrRcH6dwBJUjoOEdEVKVp20tLS4O/vjx07djSUncrKShw6dAiTJ09usv6fr9Dat28fHnvsMbz99ttISUlxSWaiti4twYge6VGo+m0PLIVnlY5DRHRVipYdnU6HyZMn4+WXX4bRaERsbCzmzp2LqKgoDB8+HDabDaWlpQgICIDBYEB8fHyj1188iTkmJgbBwcEK7AFR22LQqXHLsFSIphqU/vC50nGIiJpF8dO8Z8yYgQkTJuCZZ57BpEmToFar8d5770Gr1SIvLw/9+/fH+vXrlY5JRABuHNgRfj4aFG36UOkoRETNJsg88wklFSbM+WCn0jEuSxDqL40XRRtPVGsGzss+zZ1XSvsQTBvbGdXHf2nzNw8UBAEarQqiVeL3WDNwXvbjzK4u5uZHoQ0wNmtdxT/ZISL3p9WocPOwFIh1pjZfdIjI87DsENFVDe+dgEA/PYq3LFU6ChGR3Vh2iOiKYsL9MbBrHMwXjsN84YTScYiI7MayQ0SXJQjALdemQrKJKPx2idJxiIhahGWHiC6rX3YsYsL8UL7jS0C0KB2HiKhFWHaI6JIC/XS4vm8irGUFqPltt9JxiIhajGWHiC5p9KAkqFUCCjbynjpE5NlYdoioidQEIzonhaP26E5INRVKxyEiahWWHSJqRKNWYfyQZIh1tSjdvlbpOERErcayQ0SNDO0ZjyB/PUq2fKp0FCIih2DZIaIGYSE+GNw9Dpb806i7cEzpOEREDsGyQ0QNxg9JAWQZRf/5WOkoREQOw7JDRACALinhSIoLRuX+zZAsdUrHISJyGJYdIoJeq8ZNAzvCWlOByl82Kx2HiMihWHaICNf2ag9fgxbF/+EjIYjI+7DsELVxsRH+6J0VjbrcI7AU5yodh4jI4Vh2iNowQQAmDEmBLIoo3rxc6ThERE7BskPUhvXpHIPYCH9U7lkPSKLScYiInIJlh6iNCvDV4Ya+HWApL4Lp+B6l4xAROQ3LDlEbNWZwEjRqAcWbPlI6ChGRU7HsELVB6X940KdYVap0HCIip2LZIWpjtBoVxg9NgWiq4YM+iahNYNkhamNG9ElEgK8OxZuXKh2FiMglWHaI2pC4iAAM6BKLugvHYM4/pXQcIiKXYNkhaiNUKgF/GZ4KyWZF0aZPlI5DROQyLDtEbcTgHu0RafRF2bZVvKcOEbUpLDtEbUC40RfX9mwPc+E51J7cr3QcIiKXYtkh8nKCAEy8NhWQJRRt/LfScYiIXI5lh8jLXdOtHdpFBqB85zpIljql4xARuRzLDpEXiwj1w3V9EmApuYDqIzuVjkNEpAiWHSIvpRKAW4enAbKEwq8XKx2HiEgxLDtEXmpwTjxiwv1Q9tMaHr4iojaNZYfIC8VFBGB4r3iYC8+i5tjPSschIlIUyw6Rl9FqVJh8fTok0YqCbz5QOg4RkeJYdoi8zE0DkxASaEDJliWAaFE6DhGR4lh2iLxIRodQ9M6KRu2p/ajLPaZ0HCIit8CyQ+Qlgvx1mDg8DdbaapR896nScYiI3AbLDpEXUAnA7TdkQqcRULjuLaXjEBG5FZYdIi8wom8i2kcFoHz7WohVpUrHISJyKyw7RB4uNd6IIT3aw3T+GKqP7lI6DhGR22HZIfJgIYEG3HZ9OkRTDYo2fKR0HCIit8SyQ+ShtBoV7r6pE3RqoGDtIgCS0pGIiNwSyw6Rh5owNBURIb4o2boCYnWZ0nGIiNwWyw6RBxrYNQ7d0iJQfWQ7TKcPKh2HiMitsewQeZj0xFCMGtAB5qJclG3/Uuk4RERuj2WHyINEh/lj8vXpEE1VyOf9dIiImoVlh8hDBPjqMHVMJ6hgQ/7q1wGJJyQTETUHyw6RBzDo1Jg+rjP8DBoUrX8XUl2t0pGIiDwGyw6Rm9OoVfjr6CyEh/ig5NslsJScVzoSEZFHYdkhcmP1z7zKQPuoQJT/9AVM544oHYmIyOOw7BC5KZUATLouHemJRlT+8i0fBUFE1EIsO0Ru6GLRyU4OR+WBH1Dxy7dKRyIi8lgsO0RuRiUAE0f8t+gc/AHlu79WOhIRkUfTKB2AiH6nUatwx8gMpCUYUfXrNpTvYtEhImotlh0iN+Gj1+Cvo7PQLjIA5Xv/g8pfNisdiYjIK7DsELmBkEADpo7OQmiwAaXbVqHm2B6lIxEReQ2WHSKFJbULwR0jM6BTA8WbPkJd7m9KRyIi8iosO0QKGtgtDiP7dYBkrkX+mkUQq8uUjkRE5HVYdogUEOCrxcQR6UhpHwJzUS7y170DSKLSsYiIvBLLDpGLZSWF4+ahydBpVSj7eRNPRCYicjKWHSIXCQvxwdhByUhpHwJrTSXyv3wXYmWJ0rGIiLweyw6RkwX4ajGoR3v0y44FJAnlv2xGxc+blI5FRNRmuEXZkSQJCxYswIoVK1BVVYWcnBzMmjUL7dq1u+T6x44dw9y5c7Fv3z6oVCrk5OTgySefRExMjIuTE11eSIAe13Rvh16doqESAHP+KRR/+wkkS53S0YiI2hS3eFzEwoULsWTJEjz//PNYtmwZJEnC1KlTYbFYmqxbVlaGu+66CwaDAR999BHeeecdlJaWYurUqTCbzQqkJ/qdXqdG9/RI3DehC/7f3b3Ru1M0rPmncOGzV1D49XssOkREClD8kx2LxYLFixdj5syZGDRoEABg3rx5GDBgADZs2IBRo0Y1Wn/Tpk2ora3FSy+9BIPBAACYO3cuBg0ahJ9//hl9+vRx9S6Qh9CoVQj00yHQTw+tRgUZgCzLsFhtMJnF+l91Vkhy898zOECPqFA/tI8KRGp8COIiAqBSCRDrTKg6shPlP2+EVFfrtH0iIqKrU7zsHDlyBDU1NY1KSmBgIDIyMrBr164mZadPnz5YuHBhQ9EBAJWq/gOqysrKFucQBKHFr3U64fffBbhxTnfx3xGFBOiRlhiKxJhAdIgNQqCfvlkvN1v+W3zMNtSZRdRZbJBkCQCgVqng56OFn48W/j5a6LRqAIBNkiCbqmA6tR9Vh3fAUnT29zju/L0F4GK8+t/dO6u74Mzsw3nZjzO7OnumonjZyc/PBwBER0c3Wh4REdHwtT+Ki4tDXFxco2Vvv/02DAYDcnJyWpRBgACNRt2i17qSRu3+GZUmCEBavBG9MqOQ3D4YAGCzWiBVFaPm/AWI1aUQK0sgmWshCCpAECDofKD2DYDa4A+Vjz9UBn/4Gvzgp9FBMGghqLX4/T8rGbLVAslSAVtlDSpLL8CcdwLWolwAUkMOjdYtjhDbRa3xvMxK48zsw3nZjzNzDMXLjslkAgDodLpGy/V6PSoqKq76+o8++ggff/wxnnnmGRiNxhZlkCFDFG0teq1LCPVFR7TZADsOsbQ1HeOCMOaaJESG+kG0mFF7Yi/Kdn0Dqa5G6WhuTRDqf6DaRAkyv7+ahTOzD+dlP87MsRQvOxcPR1kslkaHpsxmM3x8fC77OlmW8dprr2HRokW47777cPvtt7cqh+zG300Nh65k986plABfHcYOTkZWUhhEixklP6yG+fTPEK0S59Us9d9fMr+/7MCZ2Yfzsh9ndjX2TEXxsnPx8FVhYSHat2/fsLywsBCpqamXfI3VasVTTz2FL7/8Ek899RTuvPNOV0QlN5TSPgS3Xp8Og1aFqkPbUbp9LQRB8MjDSERE5ByKl520tDT4+/tjx44dDWWnsrIShw4dwuTJky/5mscffxwbN27EK6+8gpEjR7oyLrkJQQCG907A0Jz2sNXVIn/1OxAripSORUREbkjxsqPT6TB58mS8/PLLMBqNiI2Nxdy5cxEVFYXhw4fDZrOhtLQUAQEBMBgM+Pzzz7F+/Xo8/vjj6NmzJ4qKfv8L7uI65N3UagG3XZeBTh1DUXfhBAq/+Tf+eHIwERHRH7nFZ/0zZszAhAkT8Mwzz2DSpElQq9V47733oNVqkZeXh/79+2P9+vUAgC+//BIA8NJLL6F///6Nfl1ch7yXXqfG9LHZyOwQior936Hwm/fBokNERFciyDzzCSUVJsz5YKfSMS5LEOovjRdFW5s+Uc3XoMG947MRafRF2fYvUX1kxyXXu3jODk9Qbh7Oy36cmX04L/txZlcXc/Oj0AY07ypsxQ9jETWHj16D+yZ0QXiwD4o3L4XpzCGlIxERkYdg2SG3Z9Cpce/4bIQH+6Bk8xKYzh5WOhIREXkQtzhnh+hydFoVpo/LRmSoL0q2fsqiQ0REdmPZIbelVgm4c1QnxIb7o+z7lTCdOqB0JCIi8kAsO+SWBAB/GZ6Gju2CUbH7K9Sc+EXpSERE5KFYdsgtjRrYEV1SwlF1cBsqD25TOg4REXkwlh1yOwO7xWFg1zjUnDqA8l1fKR2HiIg8HMsOuZXOyeG4cUBH1BWcRcmW5UrHISIiL8CyQ24jMTYIt45Ig7WqFAXr3lE6DhEReQmWHXILEaF+uPvGTpCtZlxY9Tr4CAgiInIUlh1SXKCfDveMzYJGJSNvzeuAaFE6EhEReRGWHVKUQafG9HGd4WfQoHD925BqKpSOREREXoZlhxSjUQu4+6as+sdAfLsE1pILSkciIiIvxLJDilAJwB0jMxEfHYiy7WthOndE6UhEROSlWHbI5S7eHTktwYiKX/6D6iM7lY5ERERejGWHXG70oCR0TY1A1eHtqPxls9JxiIjIy7HskEuNviYJ/bJjUXNiH8q2f6l0HCIiagNYdshlbromCf27xKL6xD6UbF2hdBwiImojNEoHIO8nALhpUBL6Z8ei+uR+lHz3qdKRiIioDWHZIadSqQRMHJ6GLinh9Z/osOgQEZGLseyQ02g1KtwxMhMp8SGo+nUbynbyCeZEROR6LDvkFIF+Otw9OgvRoX6o2L0BlQe2Kh2JiIjaKJYdcrj2UYG468ZM+OjVKP5uOUynDigdiYiI2jCWHXKoXp2iMWZQEmCzIv+LNyCWFSgdiYiI2jiWHXIIg06Nm4elonNyOCzlhchb+xZgrVM6FhEREcsOtV7HuGBMHJ6KQD8dKg/+wBORiYjIrbDsUIv56DW4cUBH5GRGQTTXofCr92AuOK10LCIiokZYdshuKpWAXpnRGNE3AT46NaqP/4KSrSsBSEpHIyIiaoJlh5pNEICspHDc0C8RxkADrFVlyP96CayleUpHIyIiuiyWHboqvVaNnMwoDOwah5BAA0RTNYo2L4Pp9EGloxEREV0Vyw5dklotIDXeiC6pEejUIRQatQpidTmKt36JmuN7lY5HRETUbCw7BADw99UiKtQf8dGBSIoLQnx0ILQaNUSrFdaCUyjesxGW4lylYxIREdmNZacN8NFrEBxgQJC/Dv6+OgT66RDgq0NwgB4hAQaEBhlg0Nd/K0iSBKmuFpYLx1D2226Yzh5WOD0REVHrsOx4EZUAtIsKRGJMEKLD/BAT5o/QYB9oNapG69kkCbLNBogWyBYTxOICVJScR92Fk6jLPwFIvKqKiIi8B8uOh9NqVOiUFIauqRHoGBsMnVYNSZIhWS2QTJWwXjiL2ooSWMsLYS0vgKWsEBAtSscmIiJyGZYdDxVu9MWgbnHokhIBnVYN0VwHa8EJFJ86gJoT+wFJVDoiERGRW2DZ8TCRoX64tlc8OieFQZIkWAvPIH/vtzDnn1I6GhERkVti2fEQep0aI/sloE/nGMiShJqT+1GybTUPSREREV0Fy44HyE4Jx5hrkuCj16Du3BEUbfmUJYeIiKiZWHbcmF6nxvghKeiaGgGxphIFX34MS/F5pWMRERF5FJYdN9U+KhCTb0hHkJ8OVYd3oGrPOohWXhJORERkL5YdN9QjIwoThiRDtllR+PViWApOQ6NVXf2FRERE1ATLjhsRBGDUgI4Y2DUOlvIi5H2xEBAtEARB6WhEREQei2XHTWg1KtwxMhOp8SGoOX0Qxd8uVToSERGRV2DZcQO+Bg2mjemMmHB/lP+8CZX7tigdiYiIyGuw7CgsOECPe8dlIzhAj9LvP0PNiV+UjkRERORVWHYUFB7ig3vHd4GfXo2ijR/AfOGE0pGIiIi8DsuOQqLD/HHP+M7Qq4GCLxfBWpqndCQiIiKvxLKjgHaRAZg+tjM0KgkFaxZArCxROhIREZHXYtlxsYSYIEwbkwWVZEXe5/Mh1VQoHYmIiMirsey4UFK7YNx9UycIogV5n8+DVFejdCQiIiKvx7LjImkJRkwZlQlYTMhb+S9IllqlIxEREbUJLDsukJ0SjltHpMNWV40LK/8FWOuUjkRERNRmsOw4Wa9O0Rg/JBnW6jLkrXwNkESlIxEREbUpLDtONLRnPK7rkwBLaT7yVr8BgE8tJyIicjWWHSdQqQSMH5KMnpnRMF04icKv31M6EhERUZvFsuNgBp0ad4zMRFK7YFQd3YXSbauVjkRERNSmsew4UGyEP+4clYlAPx3Kd32FyoPblI5ERETU5rHsOEjvrGiMuSYJsk1E4VfvwVxwWulIREREBJadVgsO0OPmYalIaR8CS1kh8r58i5eWExERuRGWnRZSqwX0y47FdX0SoBKA8r3/QcXeb5WORURERH/CsmMnlUpAz8woXNsrHgG+OljLCnBhwweQaquUjkZERESXoHjZkSQJCxYswIoVK1BVVYWcnBzMmjUL7dq1u+T6ZWVlmD17NrZu3QpBEDBy5Eg8/vjj8PHxcWrOkEADemZGo2dmFAL9dLBWlaNw4zLU5f7m1O0SERFR6yhedhYuXIglS5Zgzpw5iIqKwty5czF16lSsXbsWOp2uyfozZsyAyWTCBx98gMrKSjz99NOora3Fiy++6NBcggDERQQgNd6ItEQj4qMCIUkSxIpiFG7fCNOZQw7dHhERETmHomXHYrFg8eLFmDlzJgYNGgQAmDdvHgYMGIANGzZg1KhRjdbfu3cvdu7cifXr16Njx44AgOeeew5Tp07FI488gsjIyBblUKsEpCUYYQwyINLoh7gIf0SH+UGrUUOSJEimalQd2Yny3Rv5AE8iIiIPo2jZOXLkCGpqatCnT5+GZYGBgcjIyMCuXbualJ3du3cjPDy8oegAQM+ePSEIAvbs2YMbbrihRTmCAwz46+gsyLL8h6UyJNEK2WaFoNbAN6ETfBM6tej9HUEQgEbx6Io4L/twXvbjzOzDedmPM7sylc7Q7HUVLTv5+fkAgOjo6EbLIyIiGr72RwUFBU3W1el0CA4ORl5eXqvzCILwx3+CoFEBGm2r35eIiIiUo1Jy4yaTCQCanJuj1+thNpsvuf6lzuO53PpEREREipYdg6H+IyiLxdJoudlsvuTVVQaDocm6F9f39fV1TkgiIiLyaIqWnYuHpAoLCxstLywsvOTJxlFRUU3WtVgsKC8vR0REhPOCEhERkcdStOykpaXB398fO3bsaFhWWVmJQ4cOIScnp8n6OTk5yM/Px5kzZxqW7dy5EwDQvXt35wcmIiIij6PoCco6nQ6TJ0/Gyy+/DKPRiNjYWMydOxdRUVEYPnw4bDYbSktLERAQAIPBgOzsbHTr1g0PP/wwnn32WdTW1mLWrFkYM2ZMiy87JyIiIu8myLKyF7bZbDa8+uqr+Pzzz1FXV9dwB+W4uDjk5uZi6NCheOGFFzBu3DgAQElJCf7xj3/g+++/h16vx3XXXYennnoKer1eyd0gIiIiN6V42SEiIiJyJkXP2SEiIiJyNpYdIiIi8mosO0REROTVWHaIiIjIq7HsEBERkVdj2SEiIiKvxrLjYpIkYf78+RgwYAC6dOmCadOm4dy5c8167RdffIHU1FTk5uY2Wr5//37cdttt6Ny5M6655hrMnz8fkiQ5I74inDGzdevWYdSoUcjOzsYNN9yA1atXOyG5Muyd18UZ/fnXH2f21Vdf4YYbbkDnzp0xZswY/PTTT67YFZdx9MwkScK7776LESNGoEuXLhg5ciRWrFjhqt1xOmd8j11ksVhw44034sknn3TmLriUM+bl7T/3HU4ml3r99dflXr16yZs3b5YPHz4s33333fLw4cNls9l8xdfl5ubK3bt3l1NSUuRz5841LD958qScnZ0t/8///I986tQp+euvv5a7du0qv/32287eFZdx9Mx++uknOSMjQ166dKl89uxZ+eOPP5bT0tLkLVu2OHtXXMLeeb300kvy5MmT5cLCwka/RFGUZbl+XpmZmfK///1v+fjx4/KcOXPkTp06ycePH3flbjmVo2e2cOFCuUePHvK6devkM2fOyMuWLZMzMjLkVatWuXCvnMfR8/qj559/Xk5JSZGfeOIJZ++Gyzh6Xm3h576jsey4kNlslrt27Sp/8sknDcsqKirkzp07y2vXrr3s62w2mzxp0iT5jjvuaPIX9xNPPCGPHz9eliSpYdlrr70m33vvvc7ZCRdzxsxmz54tjx07ttH6Y8aMkZ9//nnH74CLtWReU6dOveK+33333fLf//73Rsv+8pe/yP/zP//jkMxKc8bMBgwYIC9cuLDRsqeeekq+9dZbHRNaQc6Y10Vbt26V+/btK48cOdJryo4z5uXtP/edgYexXOjIkSOoqalBnz59GpYFBgYiIyMDu3btuuzr3nzzTVitVtxzzz1NvvbDDz9g1KhREAShYdmMGTOwaNEix4ZXiDNmFhoaimPHjmH79u2QZRk7duzAiRMn0LlzZ6fsgyu1ZF5Hjx5Fx44dL/k1SZLw888/N3o/AOjVq9cV5+9JnDGzF198EWPHjm20XKVSobKy0nHBFeLoeV1UWlqKp556Cs8//zxCQkIcmllJzpiXt//cdwaWHRfKz88HAERHRzdaHhER0fC1P9u/fz8WL16MuXPnQq1WN/padXU1ioqKEBAQgP/3//4f+vfvjxtuuAFvv/02bDabc3bCxRw9MwC4/fbbMWDAAEyZMgWZmZm44447cNddd+Gmm25y/A64mL3zqqioQEFBAXbv3o0bb7wR/fv3x9/+9jecOnUKAFBZWYna2lpERUU16/08kaNnplKp0KdPn0Yzu3DhAtatW4f+/fs7cU9cw9Hzuujpp5/G4MGDMWTIEOeFV4Cj59UWfu47A8uOC5lMJgD1T3v/I71eD7PZ3GT92tpazJw5EzNnzkRCQkKTr1dXVwMAXnzxRcTExOCdd97B1KlT8dZbb+H11193/A4owNEzA4C8vDyUlZVh1qxZWLlyJZ588km8//77+Oyzzxye39XsndexY8cAALIs44UXXsC//vUvmM1m3HrrrSguLkZdXZ1d7+eJHD2zPysuLsa0adMQGhqK++67zwl74FrOmNeyZctw4sQJPPXUU05O73qOnldb+LnvDBqlA7QlBoMBQP3VBhf/DABmsxk+Pj5N1p89ezYSExMxceLES76fRlP/r69v37544IEHAADp6ekoLS3FG2+8gb///e+NPub0RI6eGQA8+OCDGDVqFG677TYA9TOrqKjA3LlzMW7cOKhUnvv/AeydV48ePfDTTz8hJCSk4XtlwYIFGDRoED7//HPcfPPNDe/3R5d7P0/k6JlNnz69Yd2TJ09i+vTpsNls+PDDDxEYGOjkvXE+R89r2LBhmDt3Lt577z34+vq6ZidcyNHzGjduHADv/rnvDJ77U90DXfwYs7CwsNHywsJCREZGNll/5cqV+PHHH9G1a1d07doV06ZNAwCMGjUKb775JkJCQqDX65GSktLodcnJyaitrUVpaamT9sR1HD2z0tJSnDx5EllZWY1e16VLF5SXl6O8vNw5O+Ii9s4LAIxGY6Mfjj4+PoiLi0NBQQGCg4Ph6+tr1/t5GkfP7KI9e/Zg4sSJ8PHxwbJly9CuXTsnpHc9R89r/fr1qKmpwV133dXw3+3u3buxdu1adO3a1Xk74iKOnldb+LnvDCw7LpSWlgZ/f3/s2LGjYVllZSUOHTqEnJycJutv2LABX375JVavXo3Vq1dj9uzZAIC3334bEydOhFqtRrdu3bBv375Grzt69CgCAwMRHBzs1P1xBUfPLCgoCD4+Pjh69Gij112cmdFodO4OOZm981q+fDl69eqF2trahmXV1dU4ffo0kpKSIAgCunXrhp07dzZ63Y4dO9CjRw/n7YgLOXpmQP15Y1OnTkVycjI++eQTrymGgOPnNXnyZHzzzTcN/82uXr0anTp1wpAhQ7zi/leOnldb+LnvFIpeC9YGvfrqq3LPnj3lTZs2NbrfgsVikUVRlAsLC2WTyXTJ127fvr3JZdTbt2+X09PT5fnz58tnzpyR161bJ3fv3l1+/fXXXbVLTufomb3yyity165d5VWrVslnz56VV61aJXft2lV+9913XbVLTmXPvC5cuCD36NFDvv/+++XffvtN3r9/v3znnXfKw4YNk+vq6mRZluXvv/9eTk9PlxcvXiwfP35cfvHFF+XOnTt71X12HDkzq9UqX3vttfLQoUPls2fPNrpPSklJicJ76hiO/h77s8mTJ3vNpeey7Ph5tYWf+47GsuNioijKL730kty7d2+5S5cu8rRp0xr+Ij537pyckpIir1y58pKvvdRf3LJcf2+KsWPHypmZmfKgQYPkt956S7bZbE7fF1dx9MxEUZQXL14sX3fddXJ2drY8cuRIecmSJY3uWeHJ7J3XwYMH5bvuukvu3r273K1bN/nBBx+UL1y40Og9V61aJV977bVyVlaWPHbsWPnHH3906T45myNntmfPHjklJeWSvwYPHqzI/jmaM77H/sjbyo4z5uXtP/cdTZBlWVb60yUiIiIiZ+E5O0REROTVWHaIiIjIq7HsEBERkVdj2SEiIiKvxrJDREREXo1lh4iIiLwayw4RERF5NZYdIiIi8mosO0REROTVWHaIiIjIq7HsEBERkVdj2SEit3Pw4EFMmTIF3bt3R9euXXHnnXfil19+afj6d999h4kTJ6JLly7o378/Zs2ahcrKyoavnz59GjNmzEC/fv3QpUsX3H777dizZ0/D13Nzc5Gamor3338f1113HbKzs7Fy5UoAwG+//YZ77rkH3bp1Q7du3XD//ffj3LlzLtt3InI8PgiUiNxKdXU1hg0bht69e+OWW26BxWLBokWLcPz4cWzZsgW7d+/Gfffdh6FDh+Lmm29GeXk5XnrpJaSnp+O9997D8ePHccsttyAhIQHTpk2DVqvFhx9+iJ9//hmLFy9Gz549kZubi6FDh8LPzw9PP/00/P39kZ2dDZPJhPHjx6NDhw645557IIoiFi1ahNLSUqxZswahoaFKj4eIWkCjdAAioj86fvw4ysrKcMcdd6Bbt24AgA4dOmD58uWoqanB66+/jvT0dCxYsACCIAAAdDodXnvtNRQXF2PBggXQ6XT48MMP4e/vDwAYNGgQRo0ahZdeegmfffZZw7auv/56jB8/vuGfH330Ufj4+OCDDz5oeG2fPn0wbNgwvPvuu3jiiSdcNQYiciAexiIit5KcnAyj0Yh7770Xs2bNwsaNGxEWFobHHnsMwcHBOHToEIYNG9ZQdADghhtuwDfffIOwsDDs3LkTgwcPbigrAKDRaDBy5EgcPHgQNTU1DcvT09MbbXv79u3o2bMnDAYDRFGEKIrw9/dHjx498OOPPzp/54nIKfjJDhG5FT8/P3zyySdYtGgRvvrqKyxfvhwGgwGjR4/GPffcA1mWr3g4qaKiAmFhYU2Wh4WFQZZlVFdXNyzz9fVttE55eTnWr1+P9evXN3m90WhsxV4RkZJYdojI7XTo0AFz586FzWbD/v37sWbNGixduhSRkZEQBAGlpaWN1jebzdi+fTuys7MRFBSE4uLiJu9ZVFQEAAgJCUFhYeEltxsQEIC+ffvirrvuavI1jYY/Lok8FQ9jEZFb+frrr9G7d28UFRVBrVaja9euePbZZxEYGIiSkhKkp6dj8+bNjV6zdetWTJ8+HYWFhcjJycHmzZsbfYJjs9mwbt06ZGVlQafTXXbbPXv2xPHjx5Geno6srCxkZWWhU6dO+OCDD7Bx40an7TMRORf/rwoRuZVu3bpBkiTcf//9mD59Ovz8/PDVV1+hqqoKw4cPx4ABA3DffffhkUcewZgxY1BcXIxXX30Vw4YNQ0pKCh544AFs3boVd9xxB6ZPnw6tVouPP/4Y586dw7vvvnvFbf/tb3/DxIkTcc8992DSpEnQ6/VYvnw5Nm3ahPnz57toAkTkaLz0nIjczv79+/Haa6/h4MGDMJlMSE5Oxr333otrr70WALBlyxYsWLAAR48ehdFoxA033IAHH3yw4Rycw4cP49VXX8Xu3bshCAI6d+6MBx54AD169ACAhkvPX3jhBYwbN67Rtn/99VfMmzcPP//8M2RZRkpKCqZPn46hQ4e6dghE5DAsO0REROTVeM4OEREReTWWHSIiIvJqLDtERETk1Vh2iIiIyKux7BAREZFXY9khIiIir8ayQ0RERF6NZYeIiIi8GssOEREReTWWHSIiIvJqLDtERETk1f4/xoiyjzkMe3oAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -5913,7 +5804,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 29, "id": "dd1839c4-994b-47b5-92d7-f1fa1aa87b61", "metadata": {}, "outputs": [ @@ -5923,7 +5814,7 @@ "" ] }, - "execution_count": 40, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } @@ -5936,31 +5827,34 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 30, "id": "bc02bb8c-c054-4c1c-bbb2-5c57f6b2c54a", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "{'accuracy': 0.6459585838343354,\n", - " 'tpr': 0.6750418760469011,\n", - " 'fnr': 0.3249581239530988,\n", - " 'fpr': 0.37333333333333335,\n", - " 'tnr': 0.6266666666666667,\n", - " 'balanced_accuracy': 0.650854271356784,\n", - " 'precision': 0.5453315290933695,\n", - " 'ppr': 0.49365397461589844,\n", - " 'log_loss': 0.6848018239572005,\n", - " 'brier_score_loss': 0.2458335879398815,\n", - " 'roc_auc': 0.6950307091010608,\n", + "{'accuracy': 0.6281708945260347,\n", + " 'tpr': 0.7217235188509874,\n", + " 'fnr': 0.27827648114901254,\n", + " 'fpr': 0.42720510095642933,\n", + " 'tnr': 0.5727948990435706,\n", + " 'balanced_accuracy': 0.6472592089472791,\n", + " 'precision': 0.5,\n", + " 'ppr': 0.5367156208277704,\n", + " 'log_loss': 0.6867538486943024,\n", + " 'brier_score_loss': 0.24680695618747117,\n", + " 'roc_auc': 0.6775356443067365,\n", + " 'ece': 0.13124855194258334,\n", + " 'ece_scaled': 0.055769772872202146,\n", + " 'ece_quantile': 0.14941633101004267,\n", " 'roc_curve_path': '/Users/acruz/Documents/folktexts/imgs/roc_curve.png',\n", " 'calibration_curve_path': '/Users/acruz/Documents/folktexts/imgs/calibration_curve.png',\n", " 'score_distribution_path': '/Users/acruz/Documents/folktexts/imgs/score_distribution.png',\n", " 'score_distribution_per_label_path': '/Users/acruz/Documents/folktexts/imgs/score_distribution_per_label.png'}" ] }, - "execution_count": 41, + "execution_count": 30, "metadata": {}, "output_type": "execute_result" } @@ -5970,22 +5864,12 @@ "from pathlib import Path\n", "\n", "results = folktexts.evaluation.evaluate_predictions(\n", - " y_true=y_train,\n", + " y_true=y_train.to_numpy(),\n", " y_pred_scores=y_train_pred,\n", " imgs_dir=Path(\"../imgs\"),\n", ")\n", "results" ] - }, - { - "cell_type": "code", - "execution_count": 26, - "id": "4454559d-cbcd-4505-84af-ede78e4144d1", - "metadata": {}, - "outputs": [], - "source": [ - "# TODO: does the curve change downwards if we add a base rate to the prompt? like \"Note that half of the population earns below 50K per year\"." - ] } ], "metadata": {