Skip to content

an implementation of softmax splatting for differentiable forward warping using PyTorch

Notifications You must be signed in to change notification settings

sniklaus/softmax-splatting

Repository files navigation

softmax-splatting

This is a reference implementation of the softmax splatting operator, which has been proposed in Softmax Splatting for Video Frame Interpolation [1], using PyTorch. Softmax splatting is a well-motivated approach for differentiable forward warping. It uses a translational invariant importance metric to disambiguate cases where multiple source pixels map to the same target pixel. Should you be making use of our work, please cite our paper [1].

Paper

For our previous work on SepConv, see: https://github.com/sniklaus/revisiting-sepconv

setup

The softmax splatting is implemented in CUDA using CuPy, which is why CuPy is a required dependency. It can be installed using pip install cupy or alternatively using one of the provided binary packages as outlined in the CuPy repository.

If you plan to process videos, then please also make sure to have pip install moviepy installed.

usage

To run it on your own pair of frames, use the following command.

python run.py --model lf --one ./images/one.png --two ./images/two.png --out ./out.png

To run in on a video, use the following command.

python run.py --model lf --video ./videos/car-turn.mp4 --out ./out.mp4

For a quick benchmark using examples from the Middlebury benchmark for optical flow, run python benchmark_middlebury.py. You can use it to easily verify that the provided implementation runs as expected.

warping

We provide a small script to replicate the third figure of our paper [1]. You can simply run the following to obtain the comparison between summation splatting, average splatting, linear splatting, and softmax splatting.

The example script is using OpenCV to load and display images, as well as to read the provided optical flow file. An easy way to install OpenCV for Python is using the pip install opencv-contrib-python package.

import cv2
import numpy
import torch

import run

import softsplat # the custom softmax splatting layer

##########################################################

torch.set_grad_enabled(False) # make sure to not compute gradients for computational performance

torch.backends.cudnn.enabled = True # make sure to use cudnn for computational performance

##########################################################

tenOne = torch.FloatTensor(numpy.ascontiguousarray(cv2.imread(filename='./images/one.png', flags=-1).transpose(2, 0, 1)[None, :, :, :].astype(numpy.float32) * (1.0 / 255.0))).cuda()
tenTwo = torch.FloatTensor(numpy.ascontiguousarray(cv2.imread(filename='./images/two.png', flags=-1).transpose(2, 0, 1)[None, :, :, :].astype(numpy.float32) * (1.0 / 255.0))).cuda()
tenFlow = torch.FloatTensor(numpy.ascontiguousarray(run.read_flo('./images/flow.flo').transpose(2, 0, 1)[None, :, :, :])).cuda()

tenMetric = torch.nn.functional.l1_loss(input=tenOne, target=run.backwarp(tenIn=tenTwo, tenFlow=tenFlow), reduction='none').mean([1], True)

for intTime, fltTime in enumerate(numpy.linspace(0.0, 1.0, 11).tolist()):
    tenSummation = softsplat.softsplat(tenIn=tenOne, tenFlow=tenFlow * fltTime, tenMetric=None, strMode='sum')
    tenAverage = softsplat.softsplat(tenIn=tenOne, tenFlow=tenFlow * fltTime, tenMetric=None, strMode='avg')
    tenLinear = softsplat.softsplat(tenIn=tenOne, tenFlow=tenFlow * fltTime, tenMetric=(0.3 - tenMetric).clip(0.001, 1.0), strMode='linear') # finding a good linearly metric is difficult, and it is not invariant to translations
    tenSoftmax = softsplat.softsplat(tenIn=tenOne, tenFlow=tenFlow * fltTime, tenMetric=(-20.0 * tenMetric).clip(-20.0, 20.0), strMode='soft') # -20.0 is a hyperparameter, called 'alpha' in the paper, that could be learned using a torch.Parameter

    cv2.imshow(winname='summation', mat=tenSummation[0, :, :, :].numpy(force=True).transpose(1, 2, 0))
    cv2.imshow(winname='average', mat=tenAverage[0, :, :, :].numpy(force=True).transpose(1, 2, 0))
    cv2.imshow(winname='linear', mat=tenLinear[0, :, :, :].numpy(force=True).transpose(1, 2, 0))
    cv2.imshow(winname='softmax', mat=tenSoftmax[0, :, :, :].numpy(force=True).transpose(1, 2, 0))
    cv2.waitKey(delay=0)
# end

xiph

In our paper, we propose to use 4K video clips from Xiph to evaluate video frame interpolation on high-resolution footage. Please see the supplementary benchmark_xiph.py on how to reproduce the shown metrics.

video

Video

license

The provided implementation is strictly for academic purposes only. Should you be interested in using our technology for any commercial use, please feel free to contact us.

references

[1]  @inproceedings{Niklaus_CVPR_2020,
         author = {Simon Niklaus and Feng Liu},
         title = {Softmax Splatting for Video Frame Interpolation},
         booktitle = {IEEE Conference on Computer Vision and Pattern Recognition},
         year = {2020}
     }

acknowledgment

The video above uses materials under a Creative Common license as detailed at the end.

About

an implementation of softmax splatting for differentiable forward warping using PyTorch

Topics

Resources

Stars

Watchers

Forks

Languages