-
Notifications
You must be signed in to change notification settings - Fork 3
/
settings.py
102 lines (77 loc) · 3.2 KB
/
settings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
"""Default settings to use for the analysis"""
from matplotlib import pyplot as plt
default_settings = {
# Is the analysis being blinded?
"blinded": False,
# Location of the SNfactory dataset.
"idr_directory": "/home/kyle/data/snfactory/idr/",
# Data release to use.
"idr": "BLACKSTON",
# Range of phases to allow for spectra in the analysis in restframe days.
"phase_range": 5.,
# Bin the spectrum with equally space bins in velocity before running the analysis.
"bin_min_wavelength": 3300.,
"bin_max_wavelength": 8600.,
"bin_velocity": 1000.,
# Verbosity.
# 0 = suppress most output
# 1 = normal output
# 2 = debug
"verbosity": 1,
# Cut on signal-to-noise
"s2n_cut_min_wavelength": 3300,
"s2n_cut_max_wavelength": 3800,
"s2n_cut_threshold": 100,
# Parameters for the differential evolution model used to model spectra at maximum
# light.
"differential_evolution_num_phase_coefficients": 4,
"differential_evolution_use_salt_x1": False,
# Parameters for the read between the lines algorithm.
"rbtl_fiducial_rv": 2.8,
# For the manifold learning analysis, we reject spectra with too large of
# uncertainties on the estimates of their spectra at maximum light. This sets the
# threshold for "too large" as the ratio of total variance of the spectrum at
# maximum light to the total intrinsic variance of Type Ia supernovae from the RBTL
# analysis.
"mask_uncertainty_fraction": 0.1,
# Parameters for the Isomap algorithm
"isomap_num_neighbors": 10,
"isomap_num_components": 3,
# The signs of Isomap components are arbitrary. Choose to flip some of them so that
# they match up nicely with previously established observables.
"isomap_flip_components": [1],
# Peculiar velocity (in km/s)
"peculiar_velocity": 300,
# Figure parameters
# Directory to save figures to
"figure_directory": "./figures/",
# Matplotlib settings for all figures.
"matplotlib_settings": {
"figure.figsize": (5., 4.),
"figure.constrained_layout.use": True,
"figure.max_open_warning": 1000,
},
# Colormap to use
"colormap": plt.cm.coolwarm,
# Size of full-page spectra figures
"spectrum_plot_figsize": (9., 2.8),
"spectrum_plot_figsize_double": (9., 5.5),
"spectrum_plot_figsize_triple": (9., 8.),
# Width of full-page combined component scatter plots
"combined_scatter_plot_width": 7.,
"combined_scatter_plot_marker_size": 50.,
# Scatter plot properties
"scatter_plot_marker_size": 70.,
# Choose how to plot spectra. Options are "f_nu" or "f_lambda". In this analysis, we
# do everything in F_lambda, but plots of SNe Ia look a lot better in F_nu because
# the overall spectrum is flatter so we do that by default. Note that the overall
# scale of our spectra is arbitrary.
"spectrum_plot_format": "f_nu",
# Default labels for spectrum plots
"spectrum_plot_xlabel": "Wavelength ($\\AA$)",
"spectrum_plot_ylabel": "Normalized flux\n(erg/$cm^2$/s/Hz)",
# Directory to save LaTeX output to
"latex_directory": "./latex/",
# Different tests to run
"test_no_interpolation": False,
}