forked from decryptoed/amoveo-cuda-miner
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsha256_gpu.cu
272 lines (232 loc) · 8.08 KB
/
sha256_gpu.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#include <cstdio>
#include <cstdlib>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
extern "C" {
#include "sha256.h"
#include "utils.h"
}
#define DATASIZE 66
__global__ void kernel_sha256(BYTE *data, unsigned int* difficulty, Nonce_result *nr,unsigned int *multiplier);
__device__ WORD hash2int(BYTE h[32]);
inline void gpuAssert(cudaError_t code, char *file, int line, bool abort)
{
if (code != cudaSuccess)
{
fprintf(stderr,"CUDA_SAFE_CALL: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
#define CUDA_SAFE_CALL(ans) { gpuAssert((ans), __FILE__, __LINE__, true); }
extern "C" bool amoveo_mine_gpu(BYTE nonce[32],unsigned int difficulty,BYTE data[66],unsigned int GDIM, unsigned int BDIM, unsigned int multiplier)
{
//Initialize Cuda Grid variables
dim3 DimGrid(GDIM,GDIM);
dim3 DimBlock(BDIM,1);
//Used to store a nonce if a block is mined
Nonce_result h_nr;
initialize_nonce_result(&h_nr);
//Allocate space on Global Memory
BYTE *d_data;
unsigned int *d_difficulty;
Nonce_result *d_nr;
unsigned int *d_multiplier;
CUDA_SAFE_CALL(cudaMalloc((void **)&d_data, DATASIZE*sizeof(BYTE)));
CUDA_SAFE_CALL(cudaMalloc((void **)&d_difficulty, sizeof(unsigned int)));
CUDA_SAFE_CALL(cudaMalloc((void **)&d_nr, sizeof(Nonce_result)));
CUDA_SAFE_CALL(cudaMalloc((void **)&d_multiplier, sizeof(unsigned int)));
//Copy data to device
CUDA_SAFE_CALL(cudaMemcpy(d_data, (void *) data, DATASIZE*sizeof(BYTE), cudaMemcpyHostToDevice));
CUDA_SAFE_CALL(cudaMemcpy(d_difficulty, (void *) &difficulty, sizeof(unsigned int), cudaMemcpyHostToDevice));
CUDA_SAFE_CALL(cudaMemcpy(d_nr, (void *) &h_nr, sizeof(Nonce_result), cudaMemcpyHostToDevice));
CUDA_SAFE_CALL(cudaMemcpy(d_multiplier, (void *) &multiplier, sizeof(unsigned int), cudaMemcpyHostToDevice));
kernel_sha256<<<DimGrid, DimBlock>>>(d_data,d_difficulty,d_nr,d_multiplier);
//Copy nonce result back to host
CUDA_SAFE_CALL(cudaMemcpy((void *) &h_nr, d_nr, sizeof(Nonce_result), cudaMemcpyDeviceToHost));
cudaDeviceSynchronize();
//Free memory on device
CUDA_SAFE_CALL(cudaFree(d_data));
CUDA_SAFE_CALL(cudaFree(d_difficulty));
CUDA_SAFE_CALL(cudaFree(d_nr));
CUDA_SAFE_CALL(cudaFree(d_multiplier));
//Copy nonce if found
if(h_nr.nonce_found){
for(int i=34; i<66;i++)
nonce[i-34]=data[i];
for(int i=0; i<sizeof(int64_t); i++)
nonce[i] = ((BYTE*)(&h_nr.nonce))[i];
}
return h_nr.nonce_found;
}
//Amoveo's hash2int function to calculate difficulty
__device__ WORD hash2int(BYTE h[32]){
WORD x = 0;
WORD y[2];
for (int i = 0; i < 31; i++) {
if (h[i] == 0) {
x += 8; //8 zeros
y[1] = h[i+1];
continue;
} else if (h[i] < 2) {
x += 7; //7 leading zeros
y[1] = (h[i] * 128) + (h[i+1] / 2);
} else if (h[i] < 4) {
x += 6; //6 leading zeros
y[1] = (h[i] * 64) + (h[i+1] / 4);
} else if (h[i] < 8) {
x += 5; //5 leading zeros
y[1] = (h[i] * 32) + (h[i+1] / 8);
} else if (h[i] < 16) {
x += 4; //4 leading zeros
y[1] = (h[i] * 16) + (h[i+1] / 16);
} else if (h[i] < 32) {
x += 3; //3 leading zeros
y[1] = (h[i] * 8) + (h[i+1] / 32);
} else if (h[i] < 64) {
x += 2; //2 leading zeros
y[1] = (h[i] * 4) + (h[i+1] / 64);
} else if (h[i] < 128) {
x += 1; //1 leading zero
y[1] = (h[i] * 2) + (h[i+1] / 128);
} else {
y[1] = h[i];
}
break; //Break if less than 8 zeros encountered
}
y[0] = x;
return ((256*y[0])+y[1]);
}
//Constants for SHA-256
__device__ static const WORD k[64] = {
0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5,
0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174,
0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da,
0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967,
0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85,
0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070,
0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3,
0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
};
//SHA-256 functions taken from Brad Conte's implementation
//https://github.com/B-Con/crypto-algorithms/blob/master/sha256.c
__device__ void d_sha256_transform(SHA256_CTX *ctx, const BYTE data[])
{
WORD a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];
for (i = 0, j = 0; i < 16; ++i, j += 4)
m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]);
for ( ; i < 64; ++i)
m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];
a = ctx->state[0];
b = ctx->state[1];
c = ctx->state[2];
d = ctx->state[3];
e = ctx->state[4];
f = ctx->state[5];
g = ctx->state[6];
h = ctx->state[7];
for (i = 0; i < 64; ++i) {
t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i];
t2 = EP0(a) + MAJ(a,b,c);
h = g;
g = f;
f = e;
e = d + t1;
d = c;
c = b;
b = a;
a = t1 + t2;
}
ctx->state[0] += a;
ctx->state[1] += b;
ctx->state[2] += c;
ctx->state[3] += d;
ctx->state[4] += e;
ctx->state[5] += f;
ctx->state[6] += g;
ctx->state[7] += h;
}
__device__ void d_sha256_init(SHA256_CTX *ctx)
{
ctx->datalen = 0;
ctx->bitlen = 0;
ctx->state[0] = 0x6a09e667;
ctx->state[1] = 0xbb67ae85;
ctx->state[2] = 0x3c6ef372;
ctx->state[3] = 0xa54ff53a;
ctx->state[4] = 0x510e527f;
ctx->state[5] = 0x9b05688c;
ctx->state[6] = 0x1f83d9ab;
ctx->state[7] = 0x5be0cd19;
}
__device__ void d_sha256_update(SHA256_CTX *ctx, const BYTE data[], size_t len)
{
WORD i;
for (i = 0; i < len; ++i) {
ctx->data[ctx->datalen] = data[i];
ctx->datalen++;
if (ctx->datalen == 64) {
d_sha256_transform(ctx, ctx->data);
ctx->bitlen += 512;
ctx->datalen = 0;
}
}
}
__device__ void d_sha256_final(SHA256_CTX *ctx, BYTE hash[])
{
WORD i;
i = ctx->datalen;
// Pad whatever data is left in the buffer.
ctx->data[i++] = 0x80;
while (i < 56)
ctx->data[i++] = 0x00;
// Append to the padding the total message's length in bits and transform.
ctx->bitlen += ctx->datalen * 8;
ctx->data[63] = ctx->bitlen;
ctx->data[62] = ctx->bitlen >> 8;
ctx->data[61] = ctx->bitlen >> 16;
ctx->data[60] = ctx->bitlen >> 24;
ctx->data[59] = ctx->bitlen >> 32;
ctx->data[58] = ctx->bitlen >> 40;
ctx->data[57] = ctx->bitlen >> 48;
ctx->data[56] = ctx->bitlen >> 56;
d_sha256_transform(ctx, ctx->data);
// Since this implementation uses little endian byte ordering and SHA uses big endian,
// reverse all the bytes when copying the final state to the output hash.
for (i = 0; i < 4; ++i) {
hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;
hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;
hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;
}
}
#define NONCE_VAL (gridDim.x*blockDim.x*blockIdx.y + blockDim.x*blockIdx.x + threadIdx.x)
__global__ void kernel_sha256(BYTE *data, unsigned int *difficulty, Nonce_result *nr, unsigned int* multiplier) {
if(nr->nonce_found) return;
int i;
int64_t nonce = gridDim.x*gridDim.x;
nonce *= blockDim.x;
nonce *= *multiplier;
nonce += NONCE_VAL;
BYTE* byte_nonce = (BYTE *)&nonce;
BYTE l_data[66];
for(i=0;i<66;i++)
l_data[i] = data[i];
for(i=0;i<sizeof(int64_t);i++)
l_data[34+i] = byte_nonce[i];
SHA256_CTX ctx;
d_sha256_init(&ctx);
d_sha256_update(&ctx,l_data,66);
BYTE hash[32];
d_sha256_final(&ctx,hash);
int work = hash2int(hash);
if( work > *difficulty)
{
nr->nonce_found = true;
nr->nonce = nonce;
}
}