1
1
use criterion:: BenchmarkId ;
2
- use criterion:: { criterion_group, criterion_main, Criterion } ;
2
+ use criterion:: { black_box , criterion_group, criterion_main, Criterion } ;
3
3
4
4
use nalgebra:: DMatrix ;
5
5
use ndarray:: Array2 ;
@@ -25,7 +25,7 @@ pub fn gaussian_naive_bayes_fit_benchmark(c: &mut Criterion) {
25
25
n_samples,
26
26
|b, _| {
27
27
b. iter ( || {
28
- GaussianNB :: fit ( & x , & y , Default :: default ( ) ) . unwrap ( ) ;
28
+ GaussianNB :: fit ( black_box ( & x ) , black_box ( & y ) , Default :: default ( ) ) . unwrap ( ) ;
29
29
} )
30
30
} ,
31
31
) ;
@@ -43,7 +43,7 @@ pub fn gaussian_naive_matrix_datastructure(c: &mut Criterion) {
43
43
let y = <DenseMatrix < f64 > as BaseMatrix < f64 > >:: RowVector :: from_array ( & classes) ;
44
44
45
45
b. iter ( || {
46
- GaussianNB :: fit ( & x , & y , Default :: default ( ) ) . unwrap ( ) ;
46
+ GaussianNB :: fit ( black_box ( & x ) , black_box ( & y ) , Default :: default ( ) ) . unwrap ( ) ;
47
47
} )
48
48
} ) ;
49
49
@@ -52,7 +52,7 @@ pub fn gaussian_naive_matrix_datastructure(c: &mut Criterion) {
52
52
let y = <Array2 < f64 > as BaseMatrix < f64 > >:: RowVector :: from_array ( & classes) ;
53
53
54
54
b. iter ( || {
55
- GaussianNB :: fit ( & x , & y , Default :: default ( ) ) . unwrap ( ) ;
55
+ GaussianNB :: fit ( black_box ( & x ) , black_box ( & y ) , Default :: default ( ) ) . unwrap ( ) ;
56
56
} )
57
57
} ) ;
58
58
@@ -61,7 +61,7 @@ pub fn gaussian_naive_matrix_datastructure(c: &mut Criterion) {
61
61
let y = <DMatrix < f64 > as BaseMatrix < f64 > >:: RowVector :: from_array ( & classes) ;
62
62
63
63
b. iter ( || {
64
- GaussianNB :: fit ( & x , & y , Default :: default ( ) ) . unwrap ( ) ;
64
+ GaussianNB :: fit ( black_box ( & x ) , black_box ( & y ) , Default :: default ( ) ) . unwrap ( ) ;
65
65
} )
66
66
} ) ;
67
67
}
0 commit comments