forked from Ultimaker/Uranium
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSortedList.py
2424 lines (1852 loc) · 74.3 KB
/
SortedList.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2014 Grant Jenks
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Copied from https://github.com/grantjenks/sorted_containers
#
# -*- coding: utf-8 -*-
#
# Sorted list implementation.
from bisect import bisect_left, bisect_right, insort
from itertools import chain, repeat, starmap
from collections import Sequence, MutableSequence
import operator as op
from operator import iadd, add
from functools import wraps
from math import log
from functools import reduce
try:
from _thread import get_ident
except ImportError:
from _dummy_thread import get_ident
def recursive_repr(func):
"""Decorator to prevent infinite repr recursion."""
repr_running = set()
@wraps(func)
def wrapper(self):
key = id(self), get_ident()
if key in repr_running:
return '...'
repr_running.add(key)
try:
return func(self)
finally:
repr_running.discard(key)
return wrapper
class SortedList(MutableSequence):
"""
SortedList provides most of the same methods as a list but keeps the items
in sorted order.
"""
def __init__(self, iterable=None, load=1000):
"""
SortedList provides most of the same methods as a list but keeps the
items in sorted order.
An optional *iterable* provides an initial series of items to populate
the SortedList.
An optional *load* specifies the load-factor of the list. The default
load factor of '1000' works well for lists from tens to tens of millions
of elements. Good practice is to use a value that is the cube root of
the list size. With billions of elements, the best load factor depends
on your usage. It's best to leave the load factor at the default until
you start benchmarking.
"""
self._len, self._maxes, self._lists, self._index = 0, [], [], []
self._load, self._twice, self._half = load, load * 2, load >> 1
self._offset = 0
if iterable is not None:
self._update(iterable)
def __new__(cls, iterable=None, key=None, load=1000):
"""
SortedList provides most of the same methods as a list but keeps the
items in sorted order.
An optional *iterable* provides an initial series of items to populate
the SortedList.
An optional *key* argument will return an instance of subtype
SortedListWithKey.
An optional *load* specifies the load-factor of the list. The default
load factor of '1000' works well for lists from tens to tens of millions
of elements. Good practice is to use a value that is the cube root of
the list size. With billions of elements, the best load factor depends
on your usage. It's best to leave the load factor at the default until
you start benchmarking.
"""
if key is None:
return object.__new__(cls)
else:
if cls is SortedList:
return SortedListWithKey(iterable=iterable, key=key, load=load)
else:
raise TypeError('inherit SortedListWithKey for key argument')
def clear(self):
"""Remove all the elements from the list."""
self._len = 0
del self._maxes[:]
del self._lists[:]
del self._index[:]
_clear = clear
def add(self, val):
"""Add the element *val* to the list."""
_maxes, _lists = self._maxes, self._lists
if _maxes:
pos = bisect_right(_maxes, val)
if pos == len(_maxes):
pos -= 1
_maxes[pos] = val
_lists[pos].append(val)
else:
insort(_lists[pos], val)
self._expand(pos)
else:
_maxes.append(val)
_lists.append([val])
self._len += 1
def _expand(self, pos):
"""Splits sublists that are more than double the load level.
Updates the index when the sublist length is less than double the load
level. This requires incrementing the nodes in a traversal from the leaf
node to the root. For an example traversal see self._loc.
"""
_lists, _index = self._lists, self._index
if len(_lists[pos]) > self._twice:
_maxes, _load = self._maxes, self._load
half = _lists[pos][_load:]
del _lists[pos][_load:]
_maxes[pos] = _lists[pos][-1]
_maxes.insert(pos + 1, half[-1])
_lists.insert(pos + 1, half)
del _index[:]
else:
if _index:
child = self._offset + pos
while child > 0:
_index[child] += 1
child = (child - 1) >> 1
_index[0] += 1
def update(self, iterable):
"""Update the list by adding all elements from *iterable*."""
_maxes, _lists = self._maxes, self._lists
values = sorted(iterable)
if _maxes:
if len(values) * 4 >= self._len:
values.extend(chain.from_iterable(_lists))
values.sort()
self._clear()
else:
_add = self.add
for val in values:
_add(val)
return
_load, _index = self._load, self._index
_lists.extend(values[pos:(pos + _load)]
for pos in range(0, len(values), _load))
_maxes.extend(sublist[-1] for sublist in _lists)
self._len = len(values)
del _index[:]
_update = update
def __contains__(self, val):
"""Return True if and only if *val* is an element in the list."""
_maxes = self._maxes
if not _maxes:
return False
pos = bisect_left(_maxes, val)
if pos == len(_maxes):
return False
_lists = self._lists
idx = bisect_left(_lists[pos], val)
return _lists[pos][idx] == val
def discard(self, val):
"""
Remove the first occurrence of *val*.
If *val* is not a member, does nothing.
"""
_maxes = self._maxes
if not _maxes:
return
pos = bisect_left(_maxes, val)
if pos == len(_maxes):
return
_lists = self._lists
idx = bisect_left(_lists[pos], val)
if _lists[pos][idx] == val:
self._delete(pos, idx)
def remove(self, val):
"""
Remove first occurrence of *val*.
Raises ValueError if *val* is not present.
"""
_maxes = self._maxes
if not _maxes:
raise ValueError('{0} not in list'.format(repr(val)))
pos = bisect_left(_maxes, val)
if pos == len(_maxes):
raise ValueError('{0} not in list'.format(repr(val)))
_lists = self._lists
idx = bisect_left(_lists[pos], val)
if _lists[pos][idx] == val:
self._delete(pos, idx)
else:
raise ValueError('{0} not in list'.format(repr(val)))
def _delete(self, pos, idx):
"""Delete the item at the given (pos, idx).
Combines lists that are less than half the load level.
Updates the index when the sublist length is more than half the load
level. This requires decrementing the nodes in a traversal from the leaf
node to the root. For an example traversal see self._loc.
"""
_maxes, _lists, _index = self._maxes, self._lists, self._index
lists_pos = _lists[pos]
del lists_pos[idx]
self._len -= 1
len_lists_pos = len(lists_pos)
if len_lists_pos > self._half:
_maxes[pos] = lists_pos[-1]
if _index:
child = self._offset + pos
while child > 0:
_index[child] -= 1
child = (child - 1) >> 1
_index[0] -= 1
elif len(_lists) > 1:
if not pos:
pos += 1
prev = pos - 1
_lists[prev].extend(_lists[pos])
_maxes[prev] = _lists[prev][-1]
del _maxes[pos]
del _lists[pos]
del _index[:]
self._expand(prev)
elif len_lists_pos:
_maxes[pos] = lists_pos[-1]
else:
del _maxes[pos]
del _lists[pos]
del _index[:]
def _loc(self, pos, idx):
"""Convert an index pair (alpha, beta) into a single index that corresponds to
the position of the value in the sorted list.
Most queries require the index be built. Details of the index are
described in self._build_index.
Indexing requires traversing the tree from a leaf node to the root. The
parent of each node is easily computable at (pos - 1) // 2.
Left-child nodes are always at odd indices and right-child nodes are
always at even indices.
When traversing up from a right-child node, increment the total by the
left-child node.
The final index is the sum from traversal and the index in the sublist.
For example, using the index from self._build_index:
_index = 14 5 9 3 2 4 5
_offset = 3
Tree:
14
5 9
3 2 4 5
Converting index pair (2, 3) into a single index involves iterating like
so:
1. Starting at the leaf node: offset + alpha = 3 + 2 = 5. We identify
the node as a left-child node. At such nodes, we simply traverse to
the parent.
2. At node 9, position 2, we recognize the node as a right-child node
and accumulate the left-child in our total. Total is now 5 and we
traverse to the parent at position 0.
3. Iteration ends at the root.
Computing the index is the sum of the total and beta: 5 + 3 = 8.
"""
if not pos:
return idx
_index = self._index
if not len(_index):
self._build_index()
total = 0
# Increment pos to point in the index to len(self._lists[pos]).
pos += self._offset
# Iterate until reaching the root of the index tree at pos = 0.
while pos:
# Right-child nodes are at odd indices. At such indices
# account the total below the left child node.
if not (pos & 1):
total += _index[pos - 1]
# Advance pos to the parent node.
pos = (pos - 1) >> 1
return total + idx
def _pos(self, idx):
"""Convert an index into a pair (alpha, beta) that can be used to access
the corresponding _lists[alpha][beta] position.
Most queries require the index be built. Details of the index are
described in self._build_index.
Indexing requires traversing the tree to a leaf node. Each node has
two children which are easily computable. Given an index, pos, the
left-child is at pos * 2 + 1 and the right-child is at pos * 2 + 2.
When the index is less than the left-child, traversal moves to the
left sub-tree. Otherwise, the index is decremented by the left-child
and traversal moves to the right sub-tree.
At a child node, the indexing pair is computed from the relative
position of the child node as compared with the offset and the remaining
index.
For example, using the index from self._build_index:
_index = 14 5 9 3 2 4 5
_offset = 3
Tree:
14
5 9
3 2 4 5
Indexing position 8 involves iterating like so:
1. Starting at the root, position 0, 8 is compared with the left-child
node (5) which it is greater than. When greater the index is
decremented and the position is updated to the right child node.
2. At node 9 with index 3, we again compare the index to the left-child
node with value 4. Because the index is the less than the left-child
node, we simply traverse to the left.
3. At node 4 with index 3, we recognize that we are at a leaf node and
stop iterating.
4. To compute the sublist index, we subtract the offset from the index
of the leaf node: 5 - 3 = 2. To compute the index in the sublist, we
simply use the index remaining from iteration. In this case, 3.
The final index pair from our example is (2, 3) which corresponds to
index 8 in the sorted list.
"""
if idx < 0:
last_len = len(self._lists[-1])
if (-idx) <= last_len:
return len(self._lists) - 1, last_len + idx
idx += self._len
if idx < 0:
raise IndexError('list index out of range')
elif idx >= self._len:
raise IndexError('list index out of range')
if idx < len(self._lists[0]):
return 0, idx
_index = self._index
if not _index:
self._build_index()
pos = 0
child = 1
len_index = len(_index)
while child < len_index:
index_child = _index[child]
if idx < index_child:
pos = child
else:
idx -= index_child
pos = child + 1
child = (pos << 1) + 1
return (pos - self._offset, idx)
def _build_index(self):
"""Build an index for indexing the sorted list.
Indexes are represented as binary trees in a dense array notation
similar to a binary heap.
For example, given a _lists representation storing integers:
[0]: 1 2 3
[1]: 4 5
[2]: 6 7 8 9
[3]: 10 11 12 13 14
The first transformation maps the sub-lists by their length. The
first row of the index is the length of the sub-lists.
[0]: 3 2 4 5
Each row after that is the sum of consecutive pairs of the previous row:
[1]: 5 9
[2]: 14
Finally, the index is built by concatenating these lists together:
_index = 14 5 9 3 2 4 5
An offset storing the start of the first row is also stored:
_offset = 3
When built, the index can be used for efficient indexing into the list.
See the comment and notes on self._pos for details.
"""
row0 = list(map(len, self._lists))
if len(row0) == 1:
self._index[:] = row0
self._offset = 0
return
head = iter(row0)
tail = iter(head)
row1 = list(starmap(add, zip(head, tail)))
if len(row0) & 1:
row1.append(row0[-1])
if len(row1) == 1:
self._index[:] = row1 + row0
self._offset = 1
return
size = 2 ** (int(log(len(row1) - 1, 2)) + 1)
row1.extend(repeat(0, size - len(row1)))
tree = [row0, row1]
while len(tree[-1]) > 1:
head = iter(tree[-1])
tail = iter(head)
row = list(starmap(add, zip(head, tail)))
tree.append(row)
reduce(iadd, reversed(tree), self._index)
self._offset = size * 2 - 1
def __delitem__(self, idx):
"""Remove the element at *idx*. Supports slicing."""
if isinstance(idx, slice):
start, stop, step = idx.indices(self._len)
if step == 1 and start < stop:
if start == 0 and stop == self._len:
return self._clear()
elif self._len <= 8 * (stop - start):
values = self._getitem(slice(None, start))
if stop < self._len:
values += self._getitem(slice(stop, None))
self._clear()
return self._update(values)
indices = range(start, stop, step)
# Delete items from greatest index to least so
# that the indices remain valid throughout iteration.
if step > 0:
indices = reversed(indices)
_pos, _delete = self._pos, self._delete
for index in indices:
pos, idx = _pos(index)
_delete(pos, idx)
else:
pos, idx = self._pos(idx)
self._delete(pos, idx)
_delitem = __delitem__
def __getitem__(self, idx):
"""Return the element at *idx*. Supports slicing."""
_lists = self._lists
if isinstance(idx, slice):
start, stop, step = idx.indices(self._len)
if step == 1 and start < stop:
if start == 0 and stop == self._len:
return reduce(iadd, self._lists, [])
start_pos, start_idx = self._pos(start)
if stop == self._len:
stop_pos = len(_lists) - 1
stop_idx = len(_lists[stop_pos])
else:
stop_pos, stop_idx = self._pos(stop)
if start_pos == stop_pos:
return _lists[start_pos][start_idx:stop_idx]
prefix = _lists[start_pos][start_idx:]
middle = _lists[(start_pos + 1):stop_pos]
result = reduce(iadd, middle, prefix)
result += _lists[stop_pos][:stop_idx]
return result
if step == -1 and start > stop:
result = self._getitem(slice(stop + 1, start + 1))
result.reverse()
return result
# Return a list because a negative step could
# reverse the order of the items and this could
# be the desired behavior.
indices = range(start, stop, step)
return list(self._getitem(index) for index in indices)
else:
if self._len:
if idx == 0:
return _lists[0][0]
elif idx == -1:
return _lists[-1][-1]
else:
raise IndexError('list index out of range')
if 0 <= idx < len(_lists[0]):
return _lists[0][idx]
len_last = len(_lists[-1])
if -len_last < idx < 0:
return _lists[-1][len_last + idx]
pos, idx = self._pos(idx)
return _lists[pos][idx]
_getitem = __getitem__
def _check_order(self, idx, val):
_lists, _len = self._lists, self._len
pos, loc = self._pos(idx)
if idx < 0:
idx += _len
# Check that the inserted value is not less than the
# previous value.
if idx > 0:
idx_prev = loc - 1
pos_prev = pos
if idx_prev < 0:
pos_prev -= 1
idx_prev = len(_lists[pos_prev]) - 1
if _lists[pos_prev][idx_prev] > val:
msg = '{0} not in sort order at index {1}'.format(repr(val), idx)
raise ValueError(msg)
# Check that the inserted value is not greater than
# the previous value.
if idx < (_len - 1):
idx_next = loc + 1
pos_next = pos
if idx_next == len(_lists[pos_next]):
pos_next += 1
idx_next = 0
if _lists[pos_next][idx_next] < val:
msg = '{0} not in sort order at index {1}'.format(repr(val), idx)
raise ValueError(msg)
def __setitem__(self, index, value):
"""
Replace the item at position *index* with *value*.
Supports slice notation. Raises a :exc:`ValueError` if the sort order
would be violated. When used with a slice and iterable, the
:exc:`ValueError` is raised before the list is mutated if the sort order
would be violated by the operation.
"""
_maxes, _lists, _pos = self._maxes, self._lists, self._pos
_check_order = self._check_order
if isinstance(index, slice):
start, stop, step = index.indices(self._len)
indices = range(start, stop, step)
if step != 1:
if not hasattr(value, '__len__'):
value = list(value)
indices = list(indices)
if len(value) != len(indices):
raise ValueError(
'attempt to assign sequence of size {0}'
' to extended slice of size {1}'
.format(len(value), len(indices)))
# Keep a log of values that are set so that we can
# roll back changes if ordering is violated.
log = []
_append = log.append
for idx, val in zip(indices, value):
pos, loc = _pos(idx)
_append((idx, _lists[pos][loc], val))
_lists[pos][loc] = val
if len(_lists[pos]) == (loc + 1):
_maxes[pos] = val
try:
# Validate ordering of new values.
for idx, oldval, newval in log:
_check_order(idx, newval)
except ValueError:
# Roll back changes from log.
for idx, oldval, newval in log:
pos, loc = _pos(idx)
_lists[pos][loc] = oldval
if len(_lists[pos]) == (loc + 1):
_maxes[pos] = oldval
raise
else:
if start == 0 and stop == self._len:
self._clear()
return self._update(value)
# Test ordering using indexing. If the given value
# isn't a Sequence, convert it to a tuple.
if not isinstance(value, Sequence):
value = tuple(value)
# Check that the given values are ordered properly.
iterator = range(1, len(value))
if not all(value[pos - 1] <= value[pos] for pos in iterator):
raise ValueError('given sequence not in sort order')
# Check ordering in context of sorted list.
if not start or not len(value):
# Nothing to check on the lhs.
pass
else:
if self._getitem(start - 1) > value[0]:
msg = '{0} not in sort order at index {1}'.format(repr(value[0]), start)
raise ValueError(msg)
if stop == len(self) or not len(value):
# Nothing to check on the rhs.
pass
else:
# "stop" is exclusive so we don't need
# to add one for the index.
if self._getitem(stop) < value[-1]:
msg = '{0} not in sort order at index {1}'.format(repr(value[-1]), stop)
raise ValueError(msg)
# Delete the existing values.
self._delitem(index)
# Insert the new values.
_insert = self.insert
for idx, val in enumerate(value):
_insert(start + idx, val)
else:
pos, loc = _pos(index)
_check_order(index, value)
_lists[pos][loc] = value
if len(_lists[pos]) == (loc + 1):
_maxes[pos] = value
def __iter__(self):
"""
Return an iterator over the Sequence.
Iterating the Sequence while adding or deleting values may raise a
`RuntimeError` or fail to iterate over all entries.
"""
return chain.from_iterable(self._lists)
def __reversed__(self):
"""
Return an iterator to traverse the Sequence in reverse.
Iterating the Sequence while adding or deleting values may raise a
`RuntimeError` or fail to iterate over all entries.
"""
return chain.from_iterable(map(reversed, reversed(self._lists)))
def islice(self, start=None, stop=None, reverse=False):
"""
Returns an iterator that slices `self` from `start` to `stop` index,
inclusive and exclusive respectively.
When `reverse` is `True`, values are yielded from the iterator in
reverse order.
Both `start` and `stop` default to `None` which is automatically
inclusive of the beginning and end.
"""
_len = self._len
if not _len:
return iter(())
start, stop, step = slice(start, stop).indices(self._len)
if start >= stop:
return iter(())
_pos = self._pos
min_pos, min_idx = _pos(start)
if stop == _len:
max_pos = len(self._lists) - 1
max_idx = len(self._lists[-1])
else:
max_pos, max_idx = _pos(stop)
return self._islice(min_pos, min_idx, max_pos, max_idx, reverse)
def _islice(self, min_pos, min_idx, max_pos, max_idx, reverse):
"""
Returns an iterator that slices `self` using two index pairs,
`(min_pos, min_idx)` and `(max_pos, max_idx)`; the first inclusive
and the latter exclusive. See `_pos` for details on how an index
is converted to an index pair.
When `reverse` is `True`, values are yielded from the iterator in
reverse order.
"""
_lists = self._lists
if min_pos > max_pos:
return iter(())
elif min_pos == max_pos and not reverse:
return iter(_lists[min_pos][min_idx:max_idx])
elif min_pos == max_pos and reverse:
return reversed(_lists[min_pos][min_idx:max_idx])
elif min_pos + 1 == max_pos and not reverse:
return chain(_lists[min_pos][min_idx:], _lists[max_pos][:max_idx])
elif min_pos + 1 == max_pos and reverse:
return chain(
reversed(_lists[max_pos][:max_idx]),
reversed(_lists[min_pos][min_idx:]),
)
elif not reverse:
return chain(
_lists[min_pos][min_idx:],
chain.from_iterable(_lists[(min_pos + 1):max_pos]),
_lists[max_pos][:max_idx],
)
else:
temp = map(reversed, reversed(_lists[(min_pos + 1):max_pos]))
return chain(
reversed(_lists[max_pos][:max_idx]),
chain.from_iterable(temp),
reversed(_lists[min_pos][min_idx:]),
)
def irange(self, minimum=None, maximum=None, inclusive=(True, True),
reverse=False):
"""
Create an iterator of values between `minimum` and `maximum`.
`inclusive` is a pair of booleans that indicates whether the minimum
and maximum ought to be included in the range, respectively. The
default is (True, True) such that the range is inclusive of both
minimum and maximum.
Both `minimum` and `maximum` default to `None` which is automatically
inclusive of the start and end of the list, respectively.
When `reverse` is `True` the values are yielded from the iterator in
reverse order; `reverse` defaults to `False`.
"""
_maxes = self._maxes
if not _maxes:
return iter(())
_lists = self._lists
# Calculate the minimum (pos, idx) pair. By default this location
# will be inclusive in our calculation.
if minimum is None:
min_pos = 0
min_idx = 0
else:
if inclusive[0]:
min_pos = bisect_left(_maxes, minimum)
if min_pos == len(_maxes):
return iter(())
min_idx = bisect_left(_lists[min_pos], minimum)
else:
min_pos = bisect_right(_maxes, minimum)
if min_pos == len(_maxes):
return iter(())
min_idx = bisect_right(_lists[min_pos], minimum)
# Calculate the maximum (pos, idx) pair. By default this location
# will be exclusive in our calculation.
if maximum is None:
max_pos = len(_maxes) - 1
max_idx = len(_lists[max_pos])
else:
if inclusive[1]:
max_pos = bisect_right(_maxes, maximum)
if max_pos == len(_maxes):
max_pos -= 1
max_idx = len(_lists[max_pos])
else:
max_idx = bisect_right(_lists[max_pos], maximum)
else:
max_pos = bisect_left(_maxes, maximum)
if max_pos == len(_maxes):
max_pos -= 1
max_idx = len(_lists[max_pos])
else:
max_idx = bisect_left(_lists[max_pos], maximum)
return self._islice(min_pos, min_idx, max_pos, max_idx, reverse)
def __len__(self):
"""Return the number of elements in the list."""
return self._len
def bisect_left(self, val):
"""
Similar to the *bisect* module in the standard library, this returns an
appropriate index to insert *val*. If *val* is already present, the
insertion point will be before (to the left of) any existing entries.
"""
_maxes = self._maxes
if not _maxes:
return 0
pos = bisect_left(_maxes, val)
if pos == len(_maxes):
return self._len
idx = bisect_left(self._lists[pos], val)
return self._loc(pos, idx)
def bisect_right(self, val):
"""
Same as *bisect_left*, but if *val* is already present, the insertion
point will be after (to the right of) any existing entries.
"""
_maxes = self._maxes
if not _maxes:
return 0
pos = bisect_right(_maxes, val)
if pos == len(_maxes):
return self._len
idx = bisect_right(self._lists[pos], val)
return self._loc(pos, idx)
bisect = bisect_right
_bisect_right = bisect_right
def count(self, val):
"""Return the number of occurrences of *val* in the list."""
_maxes = self._maxes
if not _maxes:
return 0
pos_left = bisect_left(_maxes, val)
if pos_left == len(_maxes):
return 0
_lists = self._lists
idx_left = bisect_left(_lists[pos_left], val)
pos_right = bisect_right(_maxes, val)
if pos_right == len(_maxes):
return self._len - self._loc(pos_left, idx_left)